

Grant Agreement Number ECP-2006-EDU-410030

www.virtualpatients.eu

VP Profile
implementation and
conformance testing

Deliverable number/name D2.2

Dissemination level Public

Delivery date 09/01/09

Status Draft/Final

Author(s) eViP Technical Reference Group

eContentplus

This project is funded under the eContentplus programme1,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.

1 OJ L 79, 24.3.2005, p. 1.

http://www.virtualpatients.eu/
http://www.virtualpatients.eu/

 2

1 OVERALL DESCRIPTION... 4
1.1 STRUCTURE OF THE DOCUMENT.. 4
1.2 INTRODUCTION ... 4
1.3 BACKGROUND .. 4
1.4 THE EVIP APPLICATION PROFILE... 5
1.5 VIRTUAL PATIENT SYSTEMS.. 5
1.6 COMPONENTS OF THE EVIP APPLICATION PROFILE .. 6

1.6.1 The MedBiquitous Virtual Patient Specification... 6
1.6.2 The eViP Metadata.. 10
1.6.3 The SCORM package .. 15
1.6.4 Conformance metrics .. 17

2 DESCRIPTION OF THE PROFILE IMPLEMENTATION IN EACH VP SYSTEM 19
2.1 CAMPUS... 19

2.1.1 Description of the system and the VP model used by the system... 19
2.1.2 Mapping of the VP XML MedBiquitous Standard to the Different Elements/Modules of the Player
 20
2.1.3 Export module ... 23
2.1.4 Import Module... 27

2.2 CASUS... 32
2.2.1 Description of the system and the VP model used by the system... 32
2.2.2 Mapping of the VP xml MedBiquitous standard to the different elements/modules of the player. 33
2.2.3 Export module ... 34
2.2.4 Import module ... 37

2.3 OPENLABYRINTH.. 40
2.3.1 Description of the system and the VP model used by the system... 40
2.3.2 Mapping of the VP xml MedBiquitous standard to the different elements/modules of the system 41
2.3.3 OpenLabyrinth and VUE... 41
2.3.4 OpenLabyrinth and QTI.. 42
2.3.5 Export module ... 42
2.3.6 Import module ... 45
2.3.7 Static aspects (e.g. class diagrams)... 47
2.3.8 Dynamic aspects (e.g. activity/state diagrams)... 50

2.4 WEB-SP.. 51
2.4.1 Description of the system and the VP model used by the system... 51
2.4.2 Export module ... 53
2.4.3 Import module ... 54

3 TESTING FOR CONFORMANCE... 55
3.1.1 Levels of conformance... 55
3.1.2 eViP compliancy of a VP system ... 57
3.1.3 Conformance application.. 57

3.2 EVIP CONFORMANCE TESTING SUITES ... 58
3.2.1 Introduction... 58
3.2.2 Description of eViP conformance testing application developed by KI.. 59
3.2.3 Description of XSLT-based eViP conformance testing application developed by HD.................. 60

3.3 OTHER TOOLS AND RESOURCES USEFUL IN EVIP PROFILE CONFORMANCE TESTING........................... 63
3.3.1 Description of conformance tests in Altova XML Spy... 63

3.4 TEST CASES... 64
3.5 VALIDATION OF IMPORTED CASES IN TARGET SYSTEMS - PILOT STUDY... 65
3.6 STATISTICS OF MVP USAGE IN EVIP APPLICATION PROFILE ... 69

3.6.1 Introduction... 69
3.6.2 Results ... 70
3.6.3 Conclusions... 70

4 SUMMARY.. 70
4.1 SUCCESSES & CHALLENGES .. 71
4.2 FUTURE WORK .. 71

 3

5 REFERENCES .. 71

6 ANNEX 1 STATISTICS OF MVP USAGE IN EVIP APPLICATION PROFILE............................. 72
6.1 FREQUENCY OF OCCURRENCE OF MVP ELEMENTS IN ALL 6 TEST PACKAGES 72
6.2 RELATIVE TEXT WEIGHT OF MVP ELEMENTS IN ALL 6 TEST PACKAGES.. 74

7 ANNEX 2 MVP XML AND EVIP LOM SPECIFICATIONS .. 77
7.1 THE MVP SPECIFICATION ... 77
7.2 EVIP LOM.. 77

 4

1 Overall description

1.1 Structure of the document

The goal of this document is to report on the implementation outcomes of the eViP
Application Profile and the conformance testing process in all partner systems. At the start of
the project there were as many as 5 virtual patients systems in operation. Since then, one of
these systems has been withdrawn from the project and eViP has continued with the 4 main
systems: WebSP, Casus, CAMPUS and OpenLabyrinth. It is a general viewpoint within eViP
that the reduction in VP systems will be an advantage in the medium to long term as it
reduces the number of different interfaces that users may need to become familiar with. This
report takes into account the learnings and experiences from these 4 systems. The text is
divided into four chapters:

1. Overall description - gives an overview of the eViP Application Profile in the current
version and its elements

2. The VP systems - describes in detail the implementation process of the profile in each
of the partner VP systems.

3. Testing for conformance - characterises in detail the conformance testing applications
as well as the conformance protocol. Presents the import and export results of all
systems.

4. Summary - Recapitulates the work done in this deliverable and gives and outlook for
future work.

1.2 Introduction

One of the major goals of the eViP project is to enable the sharing of virtual patients across
medical education centres. This addresses the frequent problem in development of e-learning
resources, which is the lack of time and resources while in the same time lot of effort is
wasted on duplicative work. The foundation of a successful and efficient bank of educational
resources is a common interoperability standard that would facilitate the migration of data
between diverse systems. Rather than reinventing the wheel, the eViP consortium has decided
to analyse and adapt the already existent technical specifications.

1.3 Background

A significant milestone in standardisation of e-learning content was definitely the ADL
SCORM (Sharable Content Object Reference Model) specification [21]. Despite its broad
technical capabilities and growing user acceptance the specification could not cover
completely all expectations of the community. Especially in the case of specialised learning
objects, as e.g. virtual patients, the general scope of the specification does not seem to take
advantage of all potentials of the shared content

The MedBiquitous Virtual Patient Working Group has developed a virtual patient data
specification (MVP) defining a common format for exchanging the content of virtual patients
[17] [19]. The specification utilises the advantages of SCORM reusable learning objects (like
IMS content packaging or IEEE LOM metadata) while adding new features which are
characteristic of virtual patients. This includes the definition of a common framework for
storing static data of virtual patients (VPD), activity (AM) and data availability (DAM)

 5

models describing the dynamic aspects of virtual patients, as well as an extended version of
the IEEE LOM metadata specification (MedBiquitous Healthcare LOM) enabling fast
discovery of relevant content. The requirements for a run-time environment are specified in a
separate document entitled MVP Player Specifications and Description [18].

1.4 The eViP application profile

In practice it is not always feasible to implement whole specifications. Many of the features
provided by the standards may be outside the areas of interest for a particular target-user
community. On the other hand, some aspects of a general purpose specification may be
defined too broad and need to be constrained. To solve these problems and accelerate the
implementation of standards the concept of Application Profiles has been introduced. An
Application Profile is defined as an assemblage of “data elements drawn from one or more
namespaces, combined together by implementers, and optimised for a particular local
application” [8] [22]. The aim of application profiles is not the declaration of new terms and
definitions, but the selection and re-use of existing elements to tailor to the needs of a given
group of users.

The eViP Application Profile 1.0 has been defined in the deliverable D2.1 as a profile of the
MedBiquitous Virtual Patient in the version 0.46. The version 2.0.1 defined in April 2008
adapted the version 0.48 of MVP and included in the profile the IEEE 1484.12.1-2002
Standard for Learning Object Metadata (LOM) and MedBiquitous MEDBIQ LO.10.1-2008
Healthcare Learning Object Metadata Specification (Healthcare LOM). In addition it was
decided to move up from IMS Content Packaging method to SCORM packages. This version
was signed off for implementation.

In the course of the implementation further specifications proved to be useful in the
realisation of the profile by some of the partners. Among them were a profiled version of the
IMS Question and Test Interoperability specification (QTI) implemented by the CASUS and
CAMPUS system and W3C Timed Text (TT) Authoring Format 1.0 – Distribution Format
Exchange Profile (DFXP) implemented in the CAMPUS system. However, both
specifications are still regarded as external to the profile in the current version of the eViP AP
(v. 2.0.1).

The application profile includes additionally a conformance testing suite, which is a set of
software tools for testing the degree to which the interchangeable virtual patient packages and
the partner systems conform to the requirements of the application profile. There are four
different levels of eViP compliance, which can be tested by two independent applications.

1.5 Virtual patient systems

The eViP application profile is developed to meet the needs of exchanging virtual patient
packages between four systems

! CAMPUS (with two variants CAMPUS VP and CAMPUS Key Feature)

! CASUS

! OpenLabyrinth

! Web-SP

1.5.1.1 Virtual patient models
The navigation model enables the division of the systems in three major classes with different
properties (table1):

Model Illustration Description

Linear

Virtual patients following this model are comprised
of linearly ordered cards. A card consists of a text
field, may contain media resources (as images and
videos), hyperlinks to external resources, and
(optionally) a set of one or more questions of
diverse types. The transition from one card to
another is often conditional upon answering a
question. Navigation in this model is sometimes
restricted to moves by one card forward (backward
movements are usually unrestricted). Examples:
CASUS, CAMPUS Key Feature

Semi-
Linear

Semi-linear cases enable the choice from long lists
of options. They are usually build of templates
containing many standard interview answers, typical
physical examination results or laboratory values.
The default entries are modified to show symptoms
of the given disease. The navigation between
different stages of patient treatment is often linear.
Examples: CAMPUS VP, Web-SP

Branched

Models of branched cases are graphs consisting of
nodes (similar to cards in the linear model)
interconnected by edges representing the potential
decisions of the learner. Solving a case consist in
finding a path through the graph. Examples:
OpenLabyrinth.

Tab. 1 Virtual patient models in eViP profile

A more detailed insight into the systems implementing the eViP application profile is given in
the next chapter.

1.6 Components of the eViP Application Profile

1.6.1 The MedBiquitous Virtual Patient Specification
The MedBiquitous Virtual Patient Specification consists of five main components:

 6

! Virtual Patient Data (VPD)

! Media Resources (MR)

! Data Availability Model (DAM)

! Activity Model (AM)

! Virtual Patient Player (VPP)

XML Schemas in the versions adopted by the eViP Application Profile 2.0.1 are attached in
Appendix I.

1.6.1.1 Virtual Patient Data (VPD)
Files: virtualpatients.xml, virtualpatientdata.xsd

This section contains the demographic and clinical data of the virtual patient as well as the
narrative of the simulation.

Fig. 1 Child elements of the MVP's VirtualPatientData

The clinical data is divided into six segments Medication, InterviewItem, PhysicalExam,
DiagnosticTest, Diagnosis, Intervention (Fig. 1). Each of these parts split further into more
detailed elements. The section VPDText provides general purpose fragments like narratives or

 7

text descriptions. VPDText is frequently used by systems with models in which the patient
data is not highly structured. The text may be XHTML formatted, however not all XHTML
tags are permitted. The Organization element establishes a hierarchical structure of elements
that can be used by authoring systems while importing the data. The last section XtensibleInfo
provides a method for including into the packages elements from external specifications or
content which is characteristic for a particular VP system. In the eViP profile it is used e.g. for
adding QTI or Timed Text code. The XtensibleInfo is also permitted in DAM and AM
sections.

1.6.1.2 Media Resources (MR)
Files: imsmanifest.xml, imscp_v1p1.xsd, adlcp_v1p3.xsd

Contains references to media files like images, video and audio clips, animations related to
the simulated clinical scenario. All resources need to be declared in the manifest file described
in more detail in the SCORM subchapter. Other elements from the MVP specification (Data
Availability Model) refer to the resources by XPath expressions.

1.6.1.3 Data Availability Model (DAM)
Files: dataavailabilitymodel.xml, dataavailabilitymodel.xsd

The role of the Data Availability Model is to aggregate the VPD, MR and subordinated DAM
elements for display in the player. The elements can be displayed immediately upon reaching
a given activity node or at a later point after a trigger has been activated (e.g. after user
interaction or a period of time). All elements in the DAM Nodes are referenced by XPath
expressions. In the figure below a snippet of code is presented showing a DAM node
aggregating a VPD, two MR and one smaller DAM node. The VPD and one of the MR nodes
is displayed immediately after reaching an activity node, whereas the second MR and the
DAM node are presented after releasing a trigger.

1.6.1.4 Activity Model (AM)
Files: activitymodel.xml, activitymodel.xsd

 8

The Activity Model defines the way a learner may navigate through the content of the virtual
patient. Many different types of activity models can be implemented including all three eViP
navigation models (linear, semi-linear and branched). In addition to expressing the topology
of the navigation graph this part of the MVP specification defines user scoring criteria, timers,
conditional rules of navigation and elements for aggregating activity nodes.

To define the activity model the list of available states needs to be defined. Each state
references to DAM nodes that can be displayed in the given activity.

The following example shows a nodesection representing a card in a linear VP system. This
card is comprised of two activity nodes and the main text entitled “Patient presentation” with
a comment. This nodesection is entitled “Patient history and physical examination”.

In the next fragment of MVP code three activity nodes are interconnected forming a linear
path. The link entitled “Next” joins the CARD_12944 node to the CARD_12952 node, and
the link entitled “Solution” joins the CARD_12952 node to the CARD_12960 node.

1.6.1.5 Virtual Patient Player (VPP)
The requirements for a MVP conformant Virtual Patient Player are described in detail in the
Virtual Patient Player Specification and Description Document. The implementation of this
specification is out of the scope of the eViP application profile. However, all eViP partner
systems (CAMPUS, CASUS, OpenLabyrinth and Web-SP) by being conformant to the eViP
profile fulfil many of the requirements for a MVP VPP player.

1.6.1.6 Structure of the MVP package
The MVP virtual patients are packaged as folders and distributed as a file-archive in a
standard zip-format.

Folder structure should be:
ROOT

MVP

 9

 10

+ - activitymodel.xsd
+ - activitymodel.xml
+ - dataavailabilitymodel.xsd
+ - dataavailabilitymodel.xml
+ - virtualpatientdata.xsd
+ - virtualpatientdata.xml
+ /media
 + - image1.jpg
 + - image2.jpg

Scorm
+ index.html
+ player.swf
+ adlcp_v1p3.xsd
+ imscp_v1p1.xsd
+ imsmanifest.xml
+ datatypes.dtd
+ xml.xsd
+ XMLSchema.dtd
+ /address
 + address.xsd
+ /common
 + anyElement.xsd
 + dataTypes.xsd
 + elementNames.xsd
 + elementTypes.xsd
 + rootElement.xsd
 + vocabTypes.xsd
 + vocabValues.xsd
+ /extend
 + custom.xsd
+ /unique
 + strict.xsd
+ /vocab
 + custom.xsd

Metadata
+ metadata.xml
+ healthcarelom.xsd
+ /healthcare
 + healthcaremetadata.xsd
 + healthcarevocabularies.xsd

XHTML
+ xhtml1-strict.xsd

1.6.2 The eViP Metadata
Files: metadata.xml, healthcarelom.xsd

Metadata (in other words data about data) are descriptive labels used to index (learning)
resources to make them easier to find and use [23]. In the eViP application profile the role of
the metadata specification is based upon a subset of the IEEE 1484.12.1-2002 Standard for
Learning Object Metadata and MedBiquitous Healthcare Learning Object Metadata
Specification. The primary storage location for metadata in the eViP project is the eViP
referatory. However, eViP profiled packages may convey that information in metadata files as
well. The list of recommended metadata fields can be found in the table below:

Field Description XML Binding Content type Example

LOM 1.1
repository id

Unique ID generated for the package
by the repository. Can be replaced
by local id if eViP repository id is
not available.

/lom/general/identifier lom:identifier <entry>evip:vp:1000263</entry>

LOM 1.2 title Title of the virtual patient
(in English, if available)

/lom/general/title lom:LangString <string>Infant with fever</string>

LOM 1.3
language of
resource

Language of the narratives in the
virtual patient package in the format:
required language code followed by
multiple, optional, hyphen-prefixed
subcodes (ISO 639–1, ISO 3166–1)
(e.g en-gb, en-us etc)

/lom/general/language lom:CharacterString

(eViP recommendation
[ISO 639–1]-[ISO 3166–1])

de-DE

LOM 1.4
description

Brief description of the virtual
patient
(in English, if available)

/lom/general/description lom:LangString <string>5-month-old Katrin is brought to the
pediatric outpatient clinic, she has been
having fever for 2 days is increasingly
floppy.</string>

LOM 2.3.1
role of
contributor

Author of VP, owner, etc - not the
same as the person creating the
inventory record

/lom/lifeCycle/contribute/role lom:Vocabulary <value>author</value>

LOM 2.3.2
author

Name of VP author or owner.
Recommended (but not mandatory)
is vCard-format.

/lom/lifeCycle/contribute/entity lom:CharacterString

(recommended vCard)

BEGIN:VCARD
VERSION:4.0
FN: Benjamin Hanebeck
ORG: University of Heidelberg
EMAIL;PREF;INTERNET:
benjamin.hanebeck@med.uni-heidelberg.de
END:VCARD

LOM 2.3.3
date

Date of contribution (when was the
VP content finally signed off)

/lom/lifeCycle/contribute/date lom:DateTime <dateTime>2007-09-01</dateTime>

LOM 3.2.1
role of
metadata
contributor

e.g creator or validator (of metadata
record – not the VP!)

/lom/metaMetadata/contribute/role lom:Vocabulary <value>creator</value>

LOM 3.2.2
author

Name of metadata creator.
Recommended (but not mandatory)
is vCard-format.

/lom/metaMetadata/contribute/entity lom:CharacterString

(recommended vCard)

BEGIN:VCARD
VERSION:4.0
FN: Soeren Huwendiek
ORG: University of Heidelberg
EMAIL;PREF;INTERNET:
soeren.huwendiek@med.uni-heidelberg.de

END:VCARD

LOM 3.2.3
date Date of metadata record creation

/lom/metaMetadata/contribute/date/dateTime lom:DateTime <dateTime>2008-10-01</dateTime>

LOM 4.1
technical
format

MIME type value of the VP content
package in accordance with RFC
2048.
Recommended value is
application/zip

/lom/technical/format lom:CharacterString

(MIME type)

application/zip

LOM 4.2
object size in
bytes

Size of the virtual patients in bytes

Estimate if not known exactly. The
value has to be a non-negative
integer. Insert 0 if no estimation is
possible.

/lom/technical/size xs:nonNegativeInteger 3902842

LOM 4.3
location of
object

URL/URI to the VP in original
system or repository (if available) -
may be constant for all VPs.

/lom/technical/location xs:anyURI http://galaxy.mi.hs-heilbronn.de:3333/myzms

LOM 5.2 type
of resource

Defines type of the resource in the
VP package:
Defaults to 'Virtual Patient'

/lom/educational/learningResourceType hx:Vocabulary

(Healthcare LOM Vocabulary)
Constant for eViP profiles: virtual

patient

<value>virtual patient</value>

LOM 6.1
payment
required

Is payment for this virtual patient
required?
yes/no only answers only

/lom/rights/cost lom:Vocabulary

(yes/no)

<value>no</value>

LOM 6.2
subject to
copyright

Is virtual patient cleared of
copyright?

yes/no only

/lom/rights/copyrightAndOtherRestrictions lom:Vocabulary

(yes/no)

<value>no</value>

LOM 6.3
statement of
copyright

Free text describing copyright
statement (in English). Can be
replaced by a static reference to
general eViP licence.

/lom/rights/copyrightAndOtherRestrictions lom:LangString <string>VP content approved for use with
following Creative Common restrictions:
attribution, noncommercial and share alike.
Patient consent obtained from parents in
written form.</string>

LOM 9.2
classification
purpose

Purpose of the VP classification.
Recommended is 'discipline'.

For the ‘discipline’ purpose two
classifications are recommended

/lom/classification/purpose lom:Vocabulary

<value>no</value>

 12

 13

ICD10 or MeSH.
LOM 9.2.1
classification
source

Source of the classification of VP.
Recommended are ‘ICD10’ and/or
'MeSH'. See discussion in rationale.

/lom/classification/taxonPath/source lom:LangString <value>ICD-10</value>

LOM 9.2.2.1
classification
node
identifier

If available:
Taxon identifier in the selected
classification.

/lom/classification/taxonPath/source/taxon/
id

lom:CharacterString G00.9

LOM 9.2.2.2
classification
label

If available:
Taxon label in the selected
classification.

/lom/classification/taxonPath/source/taxon/
entry

lom:LangString Bacterial meningitis

 14

XML Schemas of metadata specification in the versions adopted by the eViP Application
Profile 2.0.1 are attached in Appendix II.

1.6.2.1 Classifications in the eViP Metadata
There are currently two taxonomies recommended by the profile for classifying the resources:
ICD-10 and MeSH.

There are many controlled terminologies available in the biomedical sector. New
terminologies are published annually. Among well-established terminologies are (just to name
a few): ICD, ICPC, CPT, DSM, Read Clinical Codes, SNOMED, Galen, LOINC, MeSH,
WHO Drug Dictionary and UMLS [16]. For the description of VP in eViP partner
repositories two classification systems has been used: ICD and MeSH. Following the IMS
Meta-data Best Practice Guide for IEEE LOM recommendations we examined both
classifications in respect to factors listed in the guideline.

The following table shows the strong position of both classifications.

IMS MD BPG
Factor

ICD – International Statistical
Classification of Diseases and Related

Health Problems

MeSH – Medical Subject
Headings

1. Authority World Health Organization United States National
Library of Medicine

2. Stability First published in 1893 (currently 10th
edition)

Derives from Index Medicus
published for the first time in
1879 (currently version
2009)

3. Maintenance Revised at roughly 10-years intervals. Updated annually.
4. Currency worldwide worldwide

5. Coverage 155000 different codes (ICD-10) 25186 subject headings (v.
2009)

6. Multilinguality Available in many languages including
all eViP partner languages

Available in many languages
including almost all eViP
partner languages (exception:
Romanian)

7. Extend of current
use

The ICD is used worldwide for
morbidity and mortality statistics,
reimbursement systems and automated
decision support in medicine.

The MeSH is used
worldwide for indexing
medical literature (journal
articles and books)

8. Applicability to
user communities
requirements

yes yes

9. Conformance to
standards and
specifications

guaranteed by the authority guaranteed by the authority

It is widely acknowledged that it is difficult to find one controlled vocabulary that is accepted
by all communities. For that reasons the eViP profile does not enforce the selection of any of
these two classifications.

 15

1.6.3 The SCORM package
The MedBiquitous Virtual Patient specification leverages SCORM 2004 3rd edition for
content packaging and exchange of files related to a single virtual patient activity. SCORM
2004 is a suite of specifications and standards, including the IMS Content packaging
specification, that enables learning management systems (LMS) to import and deliver
conformant web-based, self-directed learning. Each SCORM package is a zip file containing
an XML manifest file and one or more files, each of which are referenced in the manifest. The
virtual patient activity is packaged as a single Shareable Content Object (SCO) within the
package, allowing the activity to be launched from conformant LMS.

Each package contains:

! Virtual patient data files

! Media files

! Virtual patient XML schemas

! Manifest document that details the files contained in the package and how the activity
can be launched within a learning management system.

! Manifest XML schemas

! Metadata files

! Metadata XML schemas

! Index.html file to launch the activity from an LMS

! Javascript files to enable communications with the LMS (usually separate files)

! Virtual patient player

! XML schema and DTD documents

! XHTML schemas customised for virtual patients

eViP systems importing the virtual patient activity for delivery within their own virtual
patient system may choose to ignore the following components of the SCORM package:

! Index.html file to launch the activity from an LMS

! Javascript files to enable communications with the LMS (usually separate files)

! Virtual patient player

! XML schema and DTD documents

Ultimately these components of the virtual patient package may be useful for sharing content
with the broader European community, including those institutions that do not have a virtual
patient specific system but do have a SCORM-conformant LMS.

The Manifest – Resource References

The manifest file, imsmanifest.xml, should contain a reference to each media file and
launchable HTML document contained within the content package. These files are listed as
resources, as shown within the following example:

Every resource must have:

! An identifier attribute to uniquely identify the resource

! A type attribute set to webcontent

! An adlcpscormType set to asset

! An href attribute indicating the name and location of the file associated with the
resource

! A file sub-element that list the file associated with the resource

When referencing the index.html file, all media and other data files, including
virtualpatientdata.xml, dataavailabilitymodel.xml, and activitymodel.xml should be listed
using the dependency subelement. Dependency files are referenced though the unique
identifier provided in the resource definition as in the following example:

The Manifest – Metadata Reference

The metadata subelement of manifest contains information about the package, not the virtual
patient. The metadata subelement should be set to the following:

 16

The manifest has an organizations subelement. This in turn will have one organization
subelement to describe and reference the virtual patient activity. The organization element
will have the following attributes and subelements:

! An identifier attribute that provides a unique identifier for this activity

! A title subelement that indicates the title of the virtual patient activity

! An item element that references the index.html resource

! A metadata element that uses the adlcp:location element to reference a metadata file
contained within the content package

Example:

The Player

The index.html file should contain javascript code to communicate with the LMS. The
following list shows the different functions and API calls.

! Initialise the activity within the LMS: Initialise

! Terminate the activity within the LMS: Terminate

! Set the status to completed if the learner reaches a leaf node:
SetValue(“cmi.completion_status”, “complete”)

! Report a counter score to the LMS if one counter and only one counter exists:
SetValue(“cmi.objectives.0.score.raw”, “75”)

1.6.4 Conformance metrics
Conformance testing is the process of evaluating the adherence of an implementation to the
premises of the specification. The IMS Application Profile Guideline [22] distinguishes
between the:

! Conformance of the application profile to the base specification(s)

! Conformance of vendor tools, products, and services to the application profile.

The first kind of conformance is guaranteed by the fact that the eViP application profile is a
proper sub-set of the basic specifications by MedBiquitous (MVP and Healthcare LOM) and
IEEE (LOM).

 17

 18

The second kind of conformance is graded by the degree of difficulty that divides it up into
four conformance levels:

! Level 1 - Package validation

! Level 2 - XML/XSD validation

! Level 3 - Import validation

! Level 4 - Runtime validation

Testing of conformance is carried out by two test suites developed by the eViP partners. At
least one package sample from each partner system has been tested for conformance by the
suites.

A more detailed report on the conformance levels, application suites and test cases is
described in chapter 3.

2 Description of the profile implementation in each VP System

2.1 CAMPUS

2.1.1 Description of the system and the VP model used by the system
CAMPUS consists of several “modules” (Fig. 2). These are:

1. Authoring System (Java-based application for all modules)

2. Classic-Player (a simulative, Java-based player)

3. Card-Player (card-based, (D)HTML-based player, generated from the authoring
system)

4. Secure summative assessment software (Java-based application)

5. A special eViP-conformant (D)HTML-based player

Fig. 2 Structure of the CAMPUS system

Everything can be created using the authoring system. The Virtual Patient data (for the
Classic- and Card-Player) can be edited in a special editor while the data for summative
assessments, supporting the key feature approach of Page and Bordage [11], are edited in
another editor component.

One of the main principles of the CAMPUS Virtual Patient software are:

 19

 20

1. Everything is vocabulary-based (medical history, physical and opparative exams,
diagnosis, laboratory tests, treatments) with standard answers whenever possible

2. The semi-linear approach of the Classic-Player and the linear approach of the Card-
Player ask the student which tests he wants to do and gives feedback about
consonances and differences

For displaying any eViP VP a new web-based player was developed to replace the old Card-
Player and to display any MVP content.

For that CAMPUS supports the following modes:

1. Import and export CAMPUS VP data according to the eViP standard using the
CAMPUS VP authoring system

2. Import and export any other eViP VP data and edit the content as text, media and
question slides in the Key Feature authoring system

3. Display any MVP VPs standard-based with possible system based optimisations

2.1.2 Mapping of the VP XML MedBiquitous Standard to the Different
Elements/Modules of the Player

2.1.2.1 CAMPUS VP

2.1.2.1.1 Export

For the CAMPUS VP data the data can be mapped quite easily as CAMPUS VPs uses all the
different MVP Virtual Patient elements:

1. PatientDemographics for patient informations

2. VPDText for

o summary of medical history

o summary of physical examinations

o progression

o knowledge questions (until support for QTI)

o links

o kinds of treatments

o epicrisis

o prognosis

3. InterviewItem for medical history

4. PhysicalExam for physical and technical exams

5. DiagnosticTest for laboratory tests

6. Intervention for therapies

7. Diagnosis for diagnosis

2.1.2.1.1.1 CAMPUS XtensibleInfo

In the virtualpatientdata.xml CAMPUS specific data is stored in the XtensibleInfo
region. The schema file is located inside the generated ZIP file.

2.1.2.1.1.2 QTI

CAMPUS supports six types of questions:

! Single choice

! Multiple choice

! Long menu

! Freetext

! Interval

! Hotspot

! Region of interest

Especially for long menu and region of interest there is no direct support in QTI. A self-
definition won't help as currently there is no other software supporting it. Secondly, there has
to be an extension definition for the MVP so that systems like CASUS can interpret the
references. On this topic working has begun.

2.1.2.1.2 Import

For the import the already existing CAMPUS XML files are used. The XML file is gziped
and base 64 encoded put in the XtensibleInfo tag of the virtualpatientdata.xml document:

 21

Fig. 3 4 CAMPUS extension of the eViP profile via the XtensibleInfo element

For that only an import of a CAMPUS generated eViP exports are possible with the VP
system module.

Image media files are imported directly while videos are automatically transformed into the
Flash FLV format and audio files in the MP3 format. It uses ffmpeg for converting. So, most
formats are supported. Integrated text data (e.g. in the Quicktime format) will be extracted
automatically.

2.1.2.2 Key Feature Sections

2.1.2.2.1 Export

The export serialises the XHTML, media and knowledge questions from each slide into one
ActivityNode with one text VPDText, media references inside the DAM and VPDText for each
question.In future, a QTI export for the knowledge questions will be implemented. The
generated file consists of n ActivityNodes (= n Slides).

2.1.2.2.2 Import

 22

 23

The import takes any eViP files and serialises down each ActivityNode in XHTML. For more
complex types like PhysicalExams XHTML tables are built and imported as plain XHTML.
Triggers, rules and meta data are ignored.

Image media files are imported directly while videos are transformed into the Flash FLV
format and audio files in the MP3 format.

The import supports two different additional modules (as Xtensible namespaces):

2.1.2.2.2.1 Media Captions using W3C's Timed Text

In order to support captions in media files an extension to the MVP standard has been written
(more on that in D2.3b). It separates the content from the media file for independence of the
format and in order to easily translate and modify those captions in a standard way. The
import can read this extension namespace and will give the author the ability to see and
modify those texts.

2.1.2.2.2.2 CASUS QTI Export

CASUS uses QTI to export their knowledge question. For the question types published so far
there are translations to the CAMPUS questions types as good as possible. As the export of
CASUS is very special (for instance the question itself is not defined in the QTI block and
different question types uses the same QTI question type) and the QTI standard is very
complex, the transformation using XSLT is made especially for the CASUS export.

Tab. 2 presents the transformation matrix:

CASUS Type QTI Type CAMPUS Type
Multiple Choice (MC) ChoiceInteraction MC
Freetext TextEntryInteraction Freetext
Sorting OrderInteraction Cloze
Network MatchInteraction Cloze
Mapping MatchInteraction Cloze
Lab values MatchInteraction Cloze
Long menu CustomInteraction Long menu
Cloze TextEntryInteraction Cloze
Underline HotTextInteraction MC
Non evaluated Freetext ExtendedTextInteraction Freetext

Tab. 2 Transformation matrix of QTI elements between CASUS and CAMPUS

2.1.3 Export module

2.1.3.1 Functions Related to Export of VPs

2.1.3.1.1 CAMPUS VP

To export a CAMPUS VP you have to open the case and select Learning Object ! eViP-
Export:

Fig. 5 Export of a CAMPUS VP case from the CAMPUS authoring tool to the eViP format – step 1

After that you can choose where the exported ZIP file should be stored:

Fig. 6 Export of a case CAMPUS VP from the CAMPUS authoring tool to the eViP format – step 2

2.1.3.1.2 CAMPUS Key Feature

To export a CAMPUS key feature case you have to open the case and select Learning Object
! eViP-Export:

 24

Fig. 7 Export of a CAMPUS Key Feature to the eViP format – step 1

After that you can choose where the exported ZIP file should be stored:

Fig. 8 Export of a CAMPUS Key Feature to the eViP format – step 2

 25

 26

2.1.3.2 Development of the Export Module

2.1.3.2.1 CAMPUS VP

The CAMPUS fall.xml has had to be transformed via XSLT files to the VP XML files. This
was made possible with http://xml.apache.org/xalan-j/ Xalan-J. For direct importing in
CAMPUS the original CAMPUS XML file is GZIPed (for smaller space requirements) and
base64 encoded put inside the XtensibleInfo.

2.1.3.2.2 CAMPUS Key Feature

The CAMPUS keyfeature.xml has had to be transformed via XSLT files to the VP XML files.
This was made possible with http://xml.apache.org/xalan-j/ Xalan-J.

2.1.3.3 Static Aspects

2.1.3.3.1 CAMPUS VP

For the export a CAMPUS XML export file is generated and a XSLT transformation is
started. It consists of a file called start.xslt which includes the files

! virtualpatientdata.xslt, which includes vpd-fragen.xslt for knowledge questions

! dataavailabilitymodel.xslt

! activitymodel.xslt

! lom_metadata.xslt

! imsmanifest.xslt

Those files generate the different files for the MVP package. For those HTML fragments that
are not XML conform, the library HTML Cleaner (http://htmlcleaner.sourceforge.net) is used.
The already exported media files and the newly generated XML files are stored together with
static files (e.g. the schema files) in one ZIP file.

2.1.3.3.2 CAMPUS Key Feature

For the export the CAMPUS KF export module is used. The generated XML file is
transformed into the different files using the export.xslt (which includes the vpd-fragen.xslt
sheet). After adding the media files and static files, everything is packed into a ZIP file.

2.1.3.4 Dynamic Aspects

2.1.3.4.1 CAMPUS VP

The export is arranged like a normal CAMPUS VP in the Classic- or Card-Player (DTL =
diagnostic therapy loop).

ActivityNode DAMNode DAMNodeItem(s)
Introduction Introduction Reference to VPDText
Medical history Medical history n references to InterviewItems
Medical history
summary Medical history summary Reference to a VPDText

http://htmlcleaner.sourceforge.net/
http://xml.apache.org/xalan-j/%20Xalan-J
http://xml.apache.org/xalan-j/%20Xalan-J

 27

Physical exam Physical exam n references to PhysicalExam
Physical exam
summary Physical exam summary Reference to VPDText

Suspicious
diagnosis Suspicious diagnosis n reference to Diagnosis

Start DTL x
Treatment DTL x Treatment DTL x

Physical exam Physical exam n references to PhysicalExam
Diagnostic test Diagnostic test n references to DiagnosticTest
Technical exam Technical exam n references to PhysicalExam
Working diagnosis Working diagnosis n references to Diagnosis

Check-up Technical exam, diagnostic test
and/or physical exam

n references to PhysicalExam or
DiagnosticTest

End DTL x
Prognosis Prognosis Reference to VPDText
Epicrisis Epicrisis Reference to VPDText
Can be present anywhere:
Knowledge question Knowledge question Reference to VPDText
* * Additional reference to media file
Tab. 3: CAMPUS-model from ActivityNodes down to VPD eleements

2.1.3.4.2 CAMPUS Key Feature

Every section (= slide) is transformed to one VPDText, one DAMNode and one ActivityNode.
The ActivityNodes are just sequentially arranged then.

2.1.4 Import Module

2.1.4.1 Functions Related to Import of VPs

2.1.4.1.1 CAMPUS VP

To import a CAMPUS VP eViP export file click on System ! Import case:

Fig. 9 Importing a case into the CAMPUS VP system – step 1

Select the right import filter and choose the file:

Fig. 10 Importing a case into the CAMPUS VP system – step 2

2.1.4.1.2 CAMPUS Key Feature

To import an eViP file as a key feature case click on System ! Import case:

 28

Fig. 11 Importing a case into the CAMPUS Key Feature system – step 1

Select the right import filter and choose the file:

Fig. 12 Importing a case into the CAMPUS Key Feature system – step 2

You can now open the newly imported key feature case and look through the slides:

 29

Fig. 13 Browsing through the newly imported case in CAMPUS Key Feature – step 1

Fig. 14 Browsing through the newly imported case in CAMPUS Key Feature - step 2

 30

Fig. 15 Browsing through the newly imported case in CAMPUS Key Feature - step 3

2.1.4.2 Development of the Import Module

2.1.4.2.1 CAMPUS VP

For inner CAMPUS VP import the virtualpatient.xml file is used because it contains the
whole CAMPUS VP import format in the XtensibleInfo section. This section is interpreted
and can be easily imported.

2.1.4.2.2 CAMPUS Key Feature

The eViP KF import translates the eViP XML files to CAMPUS KF XML import file using a
XSLT style sheet. It takes every ActivityNode and looks for referencing VP elements. Those
elements are put together in one big XHTML per Node while some VP elements are rendered
into XHTML structures (e.g. InterviewItems are rendered with one one div for the question
and one div for the answer).

2.1.4.3 Static Aspects

2.1.4.3.1 CAMPUS VP

For the import the already existing import module could be used for CAMPUS VPs only. The
original XML file is base 64 decoded and unzipped. After that it is imported together with the
media files.

 31

 32

2.1.4.3.2 CAMPUS Key Feature

For the import the XSLT file evip_to_keyfeature.xslt is used. The style sheets loads the
different MVP files and generates a keyfeature.xml file for the normal CAMPUS KF import
module.

2.1.4.4 Dynamic aspects

2.1.4.4.1 CAMPUS VP

As the import is just possible for CAMPUS VP eViP exports and reacts just like the normal
CAMPUS VP import no additional development took place.

2.1.4.4.2 CAMPUS Key Feature

For the import each activity node is sequentially used:

! Get the ActivityNode

! Get all the referenced DAMNodeItems

! Get all the referenced media files and VP elements

! Serialise all VP elements to XHTML, probably with special templates

! Import the serialised XHTML and media data in one slide (key feature section)

2.2 CASUS

2.2.1 Description of the system and the VP model used by the system
The player is one of the 4 modules (authoring, player, coursemanagement+evaluation,
administration) of Casus. The player is card-based and linear (although semi-linear is possible
depending on the setting).

The educational approach of Casus VPs is based on hypothetical-deductive diagnosing.
Interactive elements like different assessment items support this approach by encouraging the
learner to take an active part. Casus VPs are mostly used in a self-directed learning scenario
or as a learning by teaching tool in which the learner create the VPs themselves.

On the server-side the player (and all other modules) are implemented as Java servlets using
Hibernate (www.hibnerate.org) and an Oracle database. The client side is implemented with
HTML-templates using some Javascript and DHTML. All CASUS components works on all
main browsers like Internet Explorer, Firefox or Safari.

A case in Casus contains of about 5 (short case) up to 30 cards (long case). A case is
structured in chapters with (optional) subchapters and then the cards. Each card can contain
several items (which can be combined as needed):

! text (all text elements can include hyperlinks to external or internal resources)

! multimedia material (images with optional hotspots or a movie)

! question with the following

! question types (MCQ, 2 types of Freetext, Long Menu, Sorting, Mapping, Differential
diagnostic network, Underline, Lab values, Cloze)

! answercomment, which is availabe (including a quantitative feedback) after the user
has given an answer and clicked on solution.

! expert comment, which is available via a button in the navigation bar

Fig. 16 Screenshot of a case (authoring view) showing the elements of a case

Example cases of evip in Casus are available http://evip.casus.net (click on demo course)

2.2.2 Mapping of the VP xml MedBiquitous standard to the different
elements/modules of the player

The mapping of the Casus model classes (Java Beans) to the MedBiquitous model was
realised with the castor lib (http://www.castor.org).

 AM DAM VPD Manifest
Chapter NodeSection - -

Subchapter
NodeSection
(conformant since
MVP0.5)

-

Card ActivityNode DAMNode -
Card-Info - DAMNodeItem VPDText

Card-Question - DAMNodeItem VPDText
 33

http://www.castor.org/
http://evip.casus.net/

 34

Card-
Expertcomment - DAMNodeItem VPDText

Card-Answer(s) - DAMNodeItem
XtensibleInfo
(QTI) or VPDText
(without QTI)

Card-
Answercomment -

DAMNode (referenced
through ItemComment
of answer

VPDText

Card-Hyperlinks
(internal) - DAMNodeItem VPDText

Card-Multimedia - DAMNodeItem resource
Card-Multimedia-

comment - DAMNodeItem VPDText

Tab. 4 Mapping of CASUS controls to MVP elements

The 10 different question types available in Casus have been implemented as QTI (2.1) as
follows:

Answer Type QTI type
Multiple Choice (MC) ChoiceInteraction

Freetext TextEntryInteraction
Sorting OrderInteraction

Network MatchInteraction
Mapping MatchInteraction

Lab values MatchInteraction
Long Menu CustomInteraction (see 1)

Cloze TextEntryInteraction
Underline HotTextInteraction

Non evaluated Freetext ExtendedTextInteraction
Tab. 5 Mapping of CASUS questions to QTI assessment items

An example “case” export with different answer types is presented as the sixth test case
scenario in 3.4 . This example contains the QTI implementation of MC, freetext, non
evaluated freetext, sorting, network, lab values and underline. The original “case” can be
accessed at http://evip.casus.net (login=password=evip) [12].

2.2.3 Export module

2.2.3.1.1 Functions related to export of VPs

The import and export of cases can currently be accessed by Casus course administrators via
the main menu page in Casus (see attached screenshot). For export the id of the case has to be
entered. In case an error/exception occurs during the export, the user will be given a detailed
error report.

http://evip.casus.net/

Fig. 17 Import/Export window in CASUS

A case can be exported in two different ways:

! Using QTI for modelling the answers of this case. This allows systems supporting QTI
to import the answers automatically.

! Modelling the answers as VPDText elements. The importing system has to convert the
answer into a format it can handle.

2.2.3.1.2 Development of the export module

All elements of the MedBiquitous profile are implemented as Java classes and castor mapping
files. When exporting a Casus case is loaded from the database and the Casus case model is
converted into the MedBiquitous model. This model is marshalled and the created xml files
are zipped.

2.2.3.1.3 Static aspects (e.g. class diagrams)

The following class diagram displays the modelling of the MedBiquitous standard (For clarity
reasons we did neither include any classes modelling a Casus case nor operations performed
by the classes.

 35

Fig. 18 UML class diagram of the export module in CASUS

2.2.3.1.4 Dynamic aspects (e.g. activity/state diagrams)

For exporting a Casus case the following steps are necessary:

! Creating the MedBiqModel (described under 2.2.3.1.3))

! Load the case from the database

! export the metadata and create the manifest

! create NodeSections for Chapters and Subchapters (ActivityModel)

! create the VirtualPatientdata elements (VPDText and QTI in XtensibleInfo for
answers)

! create a DAMNode for each card and DAMNodeItems for each item created in the
VirtualPatientData (=each item on a card) (DataAvilabilityModel)

! if a card contains multimedia, this resource is added to the manifest and the media file
copied to the export folder

! Creating an ActivityNode for each card (ActivityModel)

! Loading the Castor mapping files and marshalling each component of the
MedBiqCase

The following activity diagram displays the (simplified) process of exporting a Casus case:

 36

Fig. 19 UML activity diagram of the export function in CASUS (yellow: ActivityModel, blue: Manifest,

green: VirtualPatientData, red: DataAvailabilityModel)

2.2.4 Import module

2.2.4.1.1 Functions related to import of VPs

see export. For importing a VP, the zip file has to be loaded. Optionally the userid (and
groupid) of the author who should be given access to, can be entered. Per default the user
triggering the import will be given access to.

2.2.4.1.2 Development of the import module

see export. When importing a evip VP, the MedBiquitous files are unmarshalled into the
MedBiquitous model. This model is converted into the Casus case model, which is finally
stored in the database.

 37

 38

2.2.4.1.3 Static aspects (e.g. class diagrams)

see export. The model classes used for import and export are the same.

2.2.4.1.4 Dynamic aspects (e.g. activity/state diagrams)

The (simplified) import is structured as follows:

! Loading zip File

! Creating an empty casus case and the empty MedBiqModel

! Loading the Castor mappings

! Unmarshalling all elements (ActivityModel, DataAvailabilityModel, Metadata,
VirtualPatientData, Manifest) “fills” the MedBiqModel

! Convert the Metadata into Casus format

! Create the chapters from the list of NodeSections (ActivityModel)

! Go through the DAMNodes (DataAvailabilityModel) and create a card for each
DAMNode

! All VirtualPatientData elements referenced by the DAMNodeItems of this
DAMNode are attached into the info text of the created card. (The Casus system does
not support the VirtualPatientData elements, except VPDTexts. Therefore all content
of elements (like DiagnosticTest, InterviewItem,...) referenced within one DAMNode,
are attached together as the info text of the card representing this DAMNode.)
Referenced multimedia resources are included on the card in the Casus format. The
current version does not include the XtensibleInfo elements (except qti).

! Get the NodeSection the created card belongs to and add the card to the appropriate
chapter created for this NodeSection.

! Save the completed case into the Casus database.

The following activity diagram displays this process:

Fig. 20 UML activity diagram of the import function in CASUS (yellow: Activity model, blue: Manifest,

green: VirtualPatientData, red: DataAvailabilityModel)

Import of branched VPs:

It is difficult to import a branched VP into a linear one without loosing information, which
might be important, although not included in the main path. Moreover often the main path is
not implemented in the branched system. Therefore we decided not to import only one
branch, but all nodes of all branches. This allows the author to decide about the main path,
which information will be kept or skipped. Our solution to import branched VPs into a linear
system is, to implement the activityNodes in a directed graph model. This model enables
multiple functionalities:

! Request of the start node

! Request of the end node(s) (list)

! Request of all previous nodes of a node (list or null if start node)

 39

 40

! Request of all next nodes of a node (list or null if end node)

As a first implementation step the list of potential next nodes/cards is displayed on each
imported card. The authors then can decide about the order they want to display the cards.
Unused nodes/cards can be converted into expert comments or deleted completely.

In addition a graphical display will be implemented in a future version.

The imported VPs of the partner systems (CAMPUS, OpenLabyrinth and Web-SP) are
available at http://evip.casus.net (login=password=evip).

2.3 OpenLabyrinth

2.3.1 Description of the system and the VP model used by the system
OpenLabyrinth [28] is a web application for authoring and delivering virtual patient (VP) and
other decision path and maze-like activities. It is written in Active Server Pages/Visual Basic
Script (ASP/VBScript) and requires an Open Database Connectivity (ODBC) Structured
Query Language (SQL) database. SGUL is currently using release v2.06 of OpenLabyrinth.
All eViP application profile standardisation developments have been implemented on v2.06
with a view to make all changes easily on future releases of OpenLabyrinth [29].

SGUL uses OpenLabyrinth to create primarily branched VPs as part of its institutional e-
learning strategy. OpenLabyrinth also has the ability to create linear VPs. A branched VP is
one that offers students different clinical decision making choices at key scenario points
where the story unfolds. The branched VP consists of a multitude of choices and key scenario
points. The student is free to take whichever path they feel to complete a case. The emphasis
is not always on making the correct decisions as it is felt that there is much to be learnt from
making poor decisions too. Like many other VP systems, much of OpenLabyrinth’s appeal is
the originality and quality of the VP case narrative. There is a dependency on the Visual
Understanding Environment tool (VUE) to author a VP case narrative. VUE is an Open
Source project based at Tufts University in the United States (http://vue.tufts.edu/).

Below is a typical workflow for the creation of VPs from scratch:

1. Clinicians and other subject matter experts author the case, create choices and map
branches using VUE. An example is provided in Fig. 21a

http://vue.tufts.edu/
http://evip.casus.net/

Fig. 21a VUE map for OpenLabyrinth case

2. Clinicians and other subject matter experts finalise the VUE file and this file is then
imported into OpenLabyrinth by a learning technologist.

3. The learning technologist works with the clinician and other subject matter experts to
content enrich the case with images, x-rays, laboratory reports, videos and animations.

4. All persons involved in the creation of the VP finalise the VP and it is realised to students.

For the purposes of eViP, the above workflow is modified to repurpose and enrich existing
VPs as opposed to creating VPs from scratch.

2.3.2 Mapping of the VP xml MedBiquitous standard to the different
elements/modules of the system

The Import/Export Module system was developed as a 3-Tier System (UserTier,
BusinessTier/MiddleTier, DataTier Combination) and compilation based on C#.Net
Assemblies. Each of the relevant VP xml and containing attributes, elements and subelements
of MedBiquitous standard were designed and implemented as serializable/deserializable
class objects. The business abstract class (called ContractBase defines the contract of
serialization/deserialization usage of the base class. Each VP xml class, node class, childnode
class must inherit from this ContractBase base class to satisfy serialization/deserialization
capability of its constituent nodes/childnodes.

2.3.3 OpenLabyrinth and VUE
A distinctive feature of the OpenLabyrinth system is its branched activity model. The special
strength of this approach is enabling students to select various medical examinations or

 41

 42

treatment methods and later on to deal with the consequences of their previous choices.
Branched navigation can be easily encoded using the activity model elements from the MVP
specification. Presenting virtual patient scenarios in multiple pathways, where the mistakes
may not become immediately apparent contributes to achieving a higher grade of realism of
educational materials.

The branched nature of VPs created for use in OpenLabyrinth is such that there is generally
an optimum path (or paths) for navigating through the VP. However, while this is often
described visually in the VUE diagram that would have been created when authoring the case,
there are no indicators or references to this optimum path held within OpenLabyrinth or its
database. As a consequence, cases exported from OpenLabyrinth do not offer any guidance to
assist in identifying an optimum path through the VP. When importing an OpenLabyrinth
export into another system which does not support a branched activity model it may be
necessary to make value judgements about the content of certain nodes and their suitability
for inclusion in the imported case. Without access to the information regarding the structure
of the branches and the optimum path(s), these judgements will be difficult to make. There is
the potential to wrongly exclude valuable information from the import or to include content
from contradictory nodes that may break the narrative logic of the case. In order to provide
the information to enable these decisions to be made, SGUL intend to make an export of the
VUE map available for all the VPs selected for eViP. This export should provide a reference
for the original structure of the VP and provide an indication of the optimum path(s) through
the case.

2.3.4 OpenLabyrinth and QTI
The branched activity model used by OpenLabyrinth does not necessary go along well with
the instant answer-feedback nature of common test items like MCQs, sorting or filling-in-the-
gap. Consequentially, OpenLabyrinth does not support adding test items into virtual patients
and does not need to export questions to external systems. A similar approach is also taken by
the MVP specification which currently does not include elements for encoding questions,
referring instead to the external specifications like QTI. If needed, it is recommended to
encoded assessment items within the optional XtensibleInfo section. This method is used by
VP systems as CASUS or CAMPUS in which question items play an important role. The
OpenLabyrinth model is theoretically flexible enough to support the import of some question
items from QTI blocks created by other systems. A single-answer MCQ question including
feedback, for instance, can be converted into an n+2 node large subgraph, where n is the
number of possible choices in the question.

2.3.5 Export module

2.3.5.1 Methods/Functions related to export of VPs

In Fig. 21b the UML use case diagram of the OpenLabyrinth’s export function is presented.

Fig. 21b UML Case diagram for the OpenLabyrinth’s export module

A description of how to export an MVP package from OpenLabyrinth system (step by step
screenshots with explanations) is presented in the figures below.

Fig. 22 Step 1: Export Graphical User Interface (GUI) Page is loaded.

 43

Fig. 23 Step 2: Error Message, if user clicks Export button without making a selection.

Fig. 24 Step 3: Drop down select button to select a VP case to export.

Fig. 25 Step 4: Select a VP case of choice to export from dropdown list. The unique id in OpenLabyrinth is

displayed to provide a distinction between multiple instances of the same case.

Fig. 26 Step 4: Select a VP case of choice to export from dropdown list. The unique id in OpenLabyrinth is

displayed to provide a distinction between multiple instances of the same case.

2.3.5.2 Development of the export module
The development of the export module was carried out in the following stages:

! Restructuring and Normalisation of OpenLabyrinth Database
 44

! Analysis of existing OpenLabyrinth MVP export methods
! Development of MVP Export Prototype
! Refining and finalisation of Export Requirement
! Object Orientated Coding with C#.NET

o VirtualPatientData XML (All containing elements, subelements with attributes
implemented as Serializable/Deserializable Class objects)

o ImsManifest XML (All containing elements, subelements with attributes
implemented as Serializable/Deserializable Class objects)

o ActivityModel XML (All containing elements, subelements with attributes
implemented as Serializable/Deserializable Class objects)

o DataAvailabilityModel XML (All containing elements, subelements with
attributes implemented as Serializable/Deserializable Class objects)

o Metadata XML (All containing elements, subelements with attributes
implemented as Serializable/Deserializable Class objects)

! Assembled MVP test Packages
! Unit and Integrated Testing of Export Module with the Assembled Test Package
! Deployment of Export Module

2.3.6 Import module

2.3.6.1 Methods/Functions related to import of VPs
In the and UML use case diagram of the import function is presented.

Fig. 27 UML Case diagram for the OpenLabyrinth’s import module

 45

A description of how to export an MVP package from OpenLabyrinth system (step by step
screenshots with explanations) is presented in the figures below.

Fig. 28 Step 1 Import Graphical User Interface (GUI) Page is loaded.

Fig. 29 Step 2 Display error message, if the upload button is clicked without first browsing for file to

import.

Fig. 30 Step 3 Display error message, if you try to upload a file with no .zip extension.

Fig. 31 Step 4 Display message, on successful import of Joseph_Ansah_Malaria.zip case package.

 46

2.3.7 Static aspects (e.g. class diagrams)
The following section contains class diagrams of import/export components of
OpenLabyrinth.

Fig. 32 UML Class Diagram for the MVP VPD model implemented in OpenLabyrinth

 47

Fig. 33 UML Class Diagram for the MVP DAM model implemented in OpenLabyrinth

Fig. 34 UML Class Diagram for the IMS manifest implemented in OpenLabyrinth

 48

Fig. 35 UML Class Diagram for the IEEE LOM metadata implemented in OpenLabyrinth

 49

2.3.8 Dynamic aspects (e.g. activity/state diagrams)

Fig. 36 UML Activity diagram for the export function in OpenLabyrinth

 50

Fig. 37 UML Activity diagram for the import function in OpenLabyrinth

2.4 Web-SP

2.4.1 Description of the system and the VP model used by the system

Web-SP [20] is a web-based Virtual Patient system developed at Karolinska Institute with the
aim to easily author, run and manage Virtual Patients (VP) for training and assessment
purposes. Web-SP was successfully implemented at several universities world-wide.

Web-SP version 3.2 is a framework composed of VP players and supporting tools (authoring,
administration, grading, reporting etc…)

! VP players

Two types of players are available. A single patient encounter player (Fig. 38) and multiple
patient) encounter player which presents a set of single encounters in an integrated manner.

 51

Fig. 38 The patient interview module of Web-SP 3.2

Eight modules are available in version 3.2 (introduction, patient interview, examination,
investigation, diagnosis, patient management, feedback, assessment)

Fig. 39 Shows feedback on the examinations relevant to the case

The VP players are skeletons that can output different templates based on the need of a
discipline, course or specific learning outcomes.

A template defines what modules are made available, the overall structure of each module
(eg. What main medical history categories are displayed) and what extensions should be
enabled (eg. dentistry extension or cost extension).

! Authoring environments
 52

Two types of editors are currently used by the VP authors: built-in editor (Fig. 40) and a
standalone form-based editor.

Both could be used separately or in combination based on the authoring to be performed.

Fig. 40 Shows the Web-SP built-in editor

Mapping of the VP xml Medbiquitous standard to the different elements/modules of the
player

Data from a Web-SP VP maps to the different MVP Virtual Patient elements as following:

! PatientDemographics for patient data from the introduction module

! VPDText for

! InterviewItem for medical history questions from the patient interview module

! PhysicalExam for physical exams from the examination module

! DiagnosticTest for lab tests and other tests from the investigation module

! Intervention for the therapy, care plans from the patient management module

! Diagnosis for the dx from the diagnosis module

! XtensibleInfo for Web-SP specific data

2.4.2 Export module

2.4.2.1.1 Functions related to export of VPs

 53

A VP package can be exported using any of the available authoring environments.
This feature is available to the owner(s) of the VP (aka as the VP author).

The following steps are undertaken to export a VP (Figure 41):

! Locate the VP to be exported

! Switch on the built-in authoring mode

! Click on the export link

! A pop-up windows displays a link to the VP package

! The VP package is downloaded by the user on it's local PC

Fig. 41 Shows the different steps to export a VP package from Web-SP

2.4.2.1.2 Development of the export module
The export module was a developed over a longer period of time. The first version of the
MVP supported by the Web-SP import/export tool included only the virtualpatient data xml.
The technical/architecture approach adopted is very similar to the way Casus is exporting
their VPs (reported earlier in this document)

2.4.3 Import module

2.4.3.1 Functions related to import of VPs
The import module is, in a large part, a reverse mirror of the export module. The main
difference is at the presentation (gui) level – how the eViP package is imported.

 54

A VP package is imported using one of the available authoring environments.

The following steps are undertaken to import the VP package:

! Switch on the authoring mode

! Locate the import form

! Upload the VP package from the local pc

! The uploaded VP is uploaded to the users pending area

Fig. 42 Showing the different steps while importing a VP package to Web-SP

3 Testing for conformance

3.1.1 Levels of conformance
In order for a packaged virtual patient to be successfully imported into an eViP-compliant
system, the package has to follow the eViP specifications. Checking for conformance can be
described in four levels of increasing complexity. Ideally, a packaged VP would fulfil all four
levels, but within the scope of the eViP project, compliance to level three was set as the goal
for what is technically achievable at this stage of the project. Future projects would aim at
conformance level 4 as more knowledge is acquired, during WP3, regarding the significance
of the different educational approaches adopted by the different players.

Level 1 - Package validation

The first and lowest level of conformance implies that the archive structure and content
conform with the eViP profile specifications. This means that the correct directory structure

 55

 56

and file names are used and that all required files are present. On this level, the contents of the
files are disregarded. This validation is straightforward to automate and is part of the
conformance checking tools (see below).

Level 2 - XML/XSD validation

The second level of conformance requires that the XML files are valid and well-formed
relative to their schemas. This includes XML-id references inside and between XML files in
the package, references to media resources, and references in the content of the meta file: all
included references should be valid. Whether the package contains spurious, non-referenced
items is outside the scope of this level of validation.

Level 2 conformance validation can also be automated and has indeed been implemented in
two eViP conformance test suites (see below). It is to be regarded as good practice to demand
from packages that are stored in the eViP repository that they fulfil this level of conformance.
Moreover, to be able to export level-2 compliant VP packages is an essential part of eViP
compliancy.

Level 3 - Import validation

The third level of conformance is less straightforward to define: the package must be
imported by an eViP-compliant system in a meaningful way. It is best described in a set of
desiderata. The bottomline is that an author has a clear profit from importing the package into
the system.

! After import, enough data must be available to the target author in order to start
repurposing of the case in the new system.

! Main sections of the VP package are recognised by the target VP system. After
importing there is a clear separation of narrative/clinical data describing the case from
data defining the activity model.

! As a threshold for level 3 conformance will hold: it takes less time to import the case
automatically than create it anew.

! The package should not contain non-referenced items

! Optional: selected fragments from the package can be automatically imported into the
target proprietary VP model. The import process may be customised and controlled by
the user allowing a pragmatic conversion between different system models (e.g while
converting from a branched to linear model the system may display all available state
nodes and the user selects manually the preferred path). Manual extensions are
usually required to make the case logically consistent.

It means that, for example, a simple import function written as an XSLT transformation that
changes all text available in MVP XMLs elements into a long text string regardless of the
semantics of elements would not fulfil those criteria.

This third level of conformance does not only concern the exported VP packages but also
states what eViP compliant systems should be able to do. This could result in a circular
definition: a VP package is level-3 conform (meaning: is imported meaningfully) if an eViP-
complaint system can import it meaningfully. To break the circle, eViP compliance has been
defined as being able to import a set of standardised VP packages (i.e. the test suite) in a
meaningful way.

Level 4 - Runtime validation

 57

The fourth level is the most demanding level of conformance. It states that the imported
packaged virtual patient must run in an eViP-compliant system in a way that respects the
original virtual patient. Again a set of desiderata is the best way to define this level of
conformance:

! No case-related data is lost while importing the package

! The way the data is displayed reflects the main path as it was presented in the original
system. The storyline of the case remains consistent.

! The educational value is retained.

! The learning objectives planned for the case in the original system are also achievable
in the target system.

As with level 3, conformance to level 4 is as much a property of packaged virtual patients as
it is of eViP-compliant systems. Moreover, a highly subjective aspect is added that has to be
judged by authors or educationalists. Probably, level-4 conformance will only be defined
relative to the source and target system: an exported Casus VP package could be level-four
compliant for import in CAMPUS, but not for import in Web-SP. Exported OpenLabyrinth
cases will hardly be level-four compliant to any of the other systems.

3.1.2 eViP compliancy of a VP system
From the above we agreed the following two demands for eViP compliancy of a VP system:

! An eViP compliant system must be able to export VP in packages that are conformant
to level 2 - XML/XSD validation.

! An eViP compliant system must be able to import all cases in the test suite that are
conformant to level three - Import validation.

Moreover, we can define an eViP compatibility relation between two VP systems to be on
level 3 or 4 as follows:

! Two VP systems are compatible at level 3 if they can exchange VP packages at level 3
conformance.

! Two VP systems are compatible at level 4 if they can exchange VP packages at level 4
conformance.

We assume that all four current VP systems within eViP are mutually compatible at level 3.

3.1.3 Conformance application
An automatic conformance test suite can address several areas to check if the exported files
are correctly structured according to the spec:

1. All the required files have to be inside the export file

2. All the XML files have to be syntactically correct

3. All the XML files have to be successful validated against the schema files

4. References inside and between the XML files have to be correct

5. References to media files have to succeed

 58

6. All files have to be referenced in the meta file

To test those topics a free and open-source project has been started at
http://code.google.com/p/mvp-evip-xslt-test-suite/. It can be run locally or with a webservice
where anybody can upload an export and gets the test result using a web browser.

The result is generated as an XML or HTML file.

3.2 eViP Conformance Testing Suites

3.2.1 Introduction
! Short introduction into the premises and goals of conformance testing and its

applications

As was already discussed in the previous paragraphs, the first two conformance levels of the
eViP profile can be automatically checked by ancillary software, whereas the last two, due to
their semantically advanced character, involve human intervention. This section focuses on
the first two levels. Where possible, suitable validation software was selected from a list of
already implemented tools. New modules were developed in those cases where no appropriate
component was available on the market.

Validation against level 1 requires a simple check for the presence of a set of files prescribed
by the eViP profile. From the technical point of view this task does not create any difficulties.
The validation tool needs to unzip the package and compare its content with the correct list of
files. However, because eViP profile is based on newly developed specifications, it was
necessary to implement this feature anew.

The second level of conformance examines the common problem of well-formed and valid
XML files. For that reason its solution required only the selection of a suitable tool from a
long list of publicly available software. A very comprehensive and frequently updated list of
tools for XML Schema validation is available on the W3C XML Schema page [30]. For the
purpose of determining local schema-validity in the eViP profile JAXP and Xerces were used.

XML files comprising eViP profile conformant packages are usually interlinked by references
of two kinds:

! Xpath expressions

Example: Content of DAMNode/ItemPath element in dataavailabilitymodel.xml
<DAMNodeItem display="immediately">
 <ItemPath>/VirtualPatientData/InterviewItem[@id="VPD1"]</ItemPath>
</DAMNodeItem>

! Identifier attributes

Example: identifier attribute of resource element in imsmanifest.xml
<resource identifier="R_A2" type="webcontent" adlcp:scormType="asset"
href="xray.jpg"/>

Conformance validation tools at this level need to verify the correctness of the existent
references. This includes tests for verification of the existence of referenced elements and
detection of unused elements. Such functionality was not present in the available software and
had to be developed by the eViP consortium. A more detailed description follows in the
sections below.

http://code.google.com/p/mvp-evip-xslt-test-suite/

Rather than using each module from the set of validation tools separately, it was decided to
develop a single application - so called eViP conformance testing suite - that would merge all
tools for handling the whole validation process.

Two concurrent solutions emerged representing different implementation approaches. The
conformance testing suite developed by KI uses in their analysis a Java implementation of the
Document Object Model (DOM) interface, whereas HD developed a suit based on XSLT
templates. Both applications are described in more detail in the following two sections.

3.2.2 Description of eViP conformance testing application developed by
KI

The eViP Conformance testing application developed by KI is an open source web-based
application with the primary aim to help developers/implementers to verify that a VP package
is compliant with the eViP profile with regards to conformance levels 1 and 2.
Level 1 - Package validation
The first level of conformance implies that the archive structure and content is conformant
with the eViP profile specifications. This means that the correct directory structure and file
names are used and that all required files are present.

Level 2 - XML/XSD validation
The second level of conformance requires that the XML files are well-formed and validated
against their schemas. This includes validation of XML-id references inside and between
XML files in the package, references to media resources, and XPath references in the MVP
content files.

The eViP Conformance application is downloaded from the official project site
(http://code.google.com/p/mvptools/) and then installed locally by the tester. We envision that
the tool could also be incorporated as part of a larger import/export process in the VP
repositories.

Fig. 43 The first step of the conformance testing process is the selection of the package to be tested

There are two types of outputs that can result from the testing process:

- Output A: The package is conformant
- Output B: The package is not conformant

In the case of output A, the eViP conformance application will notify the tester that the VP
package successfully passed the conformance levels 1 and 2 and provides a summary of the
media included in the package (and their location).

 59

Fig. 44 Shows the result screen of a conformant VP package

Output B is returned if any of the conditions required by conformance levels 1 and 2 are not
met. The role of the conformance testing application is then to indicate the error(s).

An example could be:

“Xml-problem at line 932:
cvc-complex-type.2.4.b: The content of element 'dam:DAMNode' is not complete.
One of '{"http://ns.medbiq.org/dataavailabilitymodel/v1/":DAMNodeItem}' is
expected.”

The current version of the conformance testing application tool was helpful in assisting the
eViP partners while making their import/export conformant with the eViP profile. As the
MVP specification evolves, the application will need to be updated to test for the latest
version. Since the source code is available, future efforts and improvements may be
conducted by a wider community of developers. The reporting section of the application
could be extended to further assist the testers and parts of conformance level 3 could be
supported by the tool.

3.2.3 Description of XSLT-based eViP conformance testing application
developed by HD

The XSLT conformance suite was developed for having a simple, yet powerful and easy to
extend suite for testing of all kinds. The XSLT conformance application mostly just uses plain
W3C standard XSLT to develop tests (currently there are 20) for all kind of areas:

! Schema validations

o Schema Validation of virtualpatientdata.xml

o Schema Validation of dataavailabilitymodel.xml

o Schema Validation of activitymodel.xml

o Schema Validation of imsmanifest.xml

! Files validations (missing files)

o Files not referenced by imsmanifest.xml

o Not found files referenced by imsmanifest.xml
 60

! Reference validations (wrong or missing references to parts)

o DAMNodes not referenced by any ActivitiyNodes

o ActivityNodes with wrong references to DAMNodes

o DAMNodeItem with wrong references in ItemPath

o DAMNodeItem with wrong references in ItemComment

o Unreferenced VPDText

o Unreferenced InterviewItem

o Unreferenced PhysicalExam

o Unreferenced DiagnosticTest

o Unreferenced Diagnosis

o Unreferenced Intervention

! Semantic validations (e.g. checks for senseless attributes)

o Duplicated IDs

o Not recommended media references

An example test is written like this:

This test case looks for all files ($files//file) and checks if they are referenced by a resource
definition in the imsmanifest.xml ($i).

The suite produces and XML file with the test results or a HTML file for easier reading. This
makes it possible to integrate it into an application.

The suite can be run as a standalone (Java Runtime 1.6+ required) application or as a web
service (for a Servlet container like Apache Tomcat).

The suite is open source (LGPL) available at http://code.google.com/p/mvp-evip-xslt-test-
suite

For a quick test you can download the package, extract it and call the batch file:
cd <installation-path>
run-tests.bat <path-to-the-extracted-package>

 61

http://code.google.com/p/mvp-evip-xslt-test-suite
http://code.google.com/p/mvp-evip-xslt-test-suite

Fig. 45 XSLT-based eViP conformance testing application by HD –executed as command line tool

Fig. 46 XSLT-based eViP conformance testing application by HD –executed as web application

 62

3.3 Other Tools and Resources useful in eViP profile conformance testing

The role of conformance testing suite is only to validate the packages - not correct them. In
case an error is detected a brief message appears and it is the role of the developer to find a
solution for the problem. This process can be supported by XML editors that support error
analysis and prototyping of potential remedies. There is a great variety of free and commercial
XML integrated development environments including <oXygen/>, Alchemist XML, Altova
XML Spy, Butterfly XML, Liquid XML Studio, Steam XML, Stylus Studio, XmlShell and
XMLwriter.

3.3.1 Description of conformance tests in Altova XML Spy
In the development and testing process of the eViP profile we often used Altova XML Spy.
The XML Spy is currently one of the most powerful and recognised XML editors available on
the market.

XML Spy enables editing of eViP conformant XML files using either the traditional text-
based view or enhanced grid view. The text view facilitates the editing by expandable and
collapsible elements, auto-completion of code (insertion of mandatory elements or attributes)
and auto-formatting feature. The grid view presents XML in a hierarchical table format
especially useful in analysing of large files as it is often the case for virtual patients (Fig. 47).

Fig. 47 Altova XML Spy - Grid view of MVP virtual patient data file.

Requested element can be easily located by an advanced find/replace function or through
XPath queries. XML Spy includes also an integrated XSLT processor.

XML Spy has specialised features to facilitate browsing of XML Schema files through a
special Schema/WSDL view. All mandatory and optional element definitions can be
visualised in a text view, table format or as a expandable tree.

 63

Fig. 48 Altova XML Spy –graphical view of XML Schemas

XML Spy examines well-formedness and validity of edited XML files. However, in contrast
to the test suites XML Spy is only able to check for syntax and schema errors but e.g. not
verify the existence of references resources and elements.

Unfortunately, XML Spy is commercial and available for Microsoft Windows only.

3.4 Test cases

Following virtual patients has been selected as test cases:

Test Case 1
VP System: CAMPUS VP
Model: Semi-linear, Terminology based
Patient id: evip:vp:1000263
Patient
name: Katrin M.

Description: Bacterial meningitis; procedures with suspected meningitis. Differential
diagnoses: pneumonia, urinary tract infection

Authors: Benjamin Hanebeck
Test Case 2

VP System: CAMPUS Key Feature
Model: Linear
Patient id: evip:vp:1000263
Patient
name: Katrin M.

Description: Bacterial meningitis; procedures with suspected meningitis. Differential

 64

 65

diagnoses: pneumonia, urinary tract infection
Authors: Benjamin Hanebeck
Test Case 3a

VP System: CASUS
Model: Linear (assessmentitems implemented as QTI
Patient id: evip:vp:1000131
Patient name: 43 year old saleswoman presented with dyspnea
Description: This case shows criterias for radiography of the chest.
Authors: M. Fischer, M. Maleck, F. Schenk
Test Case 3b
VP System: CASUS
Model: Linear (assessmentitems implemented as VPDText
Patient id: evip:vp:1000131
Patient name: 43 year old saleswoman presented with dyspnea
Description: This case shows criterias for radiography of the chest.
Authors: M. Fischer, M. Maleck, F. Schenk

Test Case 4
VP System: OpenLabyrinth
Model: Branched
Patient id: evip:vp:1000007
Patient name: Joseph Ansah's
Description: This is a demonstration virtual patient of Malaria
Authors: Arnold Somasunderam

Test Case 5
VP System: Web-SP
Model: Semi-linear
Patient id: evip:vp:1000114
Patient name: Tom P Miller
Description: Patient with symptoms of pneumonia
Authors: Dept Lime, Karolinska

In addition, one case has been created artificially to demonstrate QTI features in virtual
patient packages:

Test Case 6
VP System: CASUS
Model: Linear with QTI Test Items
Description: Example case with all answertypes (except long menu and cloze) for evip
Authors: Inga Hege

3.5 Validation of imported cases in target systems - pilot study

Selected examples from the test cases in section 3.4 have been imported into target VP
systems to validate the conformance at the third level.

Import between linear and semi-linear systems worked very well. In Fig. 49 an imported case
from CASUS (Test Case 3) is visible in the authoring tool of CAMPUS.

Fig. 49 Test Case 3 (CASUS) in CAMPUS Authoring Tool

The text in the CAMPUS player is well formatted and images are in place (Fig. 50). QTI
assessment items have been automatically imported and are ready for use (Knowledge
question tab in Fig. 49). Even less popular question types like sorting or network questions
are transferable to the authoring tool and operable in the CAMPUS player (Fig. 51). The
transfer of cases the other way around (from semi-linear into linear) has also been tested and
is demonstrated for the systems CASUS and CAMPUS in Fig. 52 (Test Case 2) and CASUS
and Web-SP in Fig. 53 (Test Case 5 – it resulted in an unusual long case with lot short cards).
The third level of conformance for these models has been reached.

 66

Fig. 50 Test Case 3 (CASUS) in CAMPUS eViP-Player

Fig. 51 Test Case 6 (CASUS QTI) in CAMPUS eViP-Player - Sorting question

 67

Fig. 52 Test Case 2 (CAMPUS) in CASUS player

Fig. 53 Test Case 5 (Web-SP) in CASUS player

The most difficult transfer - from branched into (semi-)linear models - has also been achieved
at the third conformance level. The result of importing of the test case 4 into CAMPUS is
presented in Fig. 54. Importing of the same case into CASUS is demonstrated in Fig. 55.
Pragmatic methods (described in more detail in paragraph 2.2) have been used to “linearise”
the branches. In CASUS for instance, links available in the original case have been converted
to text strings and the nodes ordered roughly. In all cases of branched VPs imported into
(semi-) linear, manual post-processing operations were needed.

 68

Fig. 54 Test Case 4 (OpenLabyrinth) in CAMPUS eViP player

Fig. 55 Test Case 4 (OpenLabyrinth) in CASUS player

3.6 Statistics of MVP usage in eViP application profile

3.6.1 Introduction
A simple tool has been implemented to calculate statistics of the implemented VP cases. It
gives an interesting insight into what elements of MVP model are useful for each partner
systems.

 69

 70

The first part of the obtained data (! annex 1) contains tables on how frequently individual
elements of the MVP schema implemented in the eViP profiles have been used in all tested
VP cases. Some schema elements may occur in more than one place in the XML DOM-tree.
For these cases the frequency of values has added together. The number of used elements
cannot be taken as an indicator of the quality of implementation but rather a measure of the
compatibility between the MVP model and proprietary models (or simply, as a feature of
given VP model class).

The second part shows the number of characters (without spaces) in text elements that are
children of the given element (a top-down walk through the tree). This demonstrates how
“text intensive” are those elements. The relative values are the absolute number of characters
divided by the frequency of occurrence of the element in the document.

3.6.2 Results
Results for 6 test VP cases are available in annex 1.

3.6.3 Conclusions
Based on the results obtained for test cases which are presented in annex 1 early conclusions
may be drawn:

1. eViP's semi-linear models like CAMUS VP and Web-SP use many specialised fields
like BodyPart or InterviewItem with relatively few general purpose text elements like
VPDText in the Virtual Patient Data description

2. eViP's Linear cases (like Casus or CAMPUS Key Feature) are characterised by the
frequent use of text-heavy VPDText elements in the Virtual Patient Data description

3. Distinctive feature of branched cases is the relatively high number of Link and Rule
elements in the Activity Model.

4. All elements in the DAM model proved to be useful

5. Three (CAMPUS, Casus, Web-SP) out of four systems used the XtensibleInfo element
to extend the specification

6. Not used (so far) by the eViP application profile were MVP elements expressing:

a) Conditional rules
b) Counter
c) Timers
d) Specialised body location indicators (eg. ProximalOrDistal, InferiorOrSuperior)
e) High level classification fields like species, breed

For general conclusions more eViP conformant cases need to be tested.

4 Summary

The purpose of deliverable 2.2 was to implement the eViP profile (D2.1) in all partner
systems and test that these allow compliant import and export of VP content.

 71

4.1 Successes & challenges
All four VP systems successfully implemented the eViP profile. The variation in strategies to
achieve this deliverable has provided us with an increased understanding of the different VP
systems which is also of interest to the wider technical community.

The learnings by all the partners involved in the implementation of the eViP profile have the
potential to be generalised and adopted by future implementers of the profile for different
systems. The successful mix of several specifications (MVP xml, Healthcare LOM, SCORM)
is innovative and has inspired the international healthcare standardisation community.

The eViP project was the first of its kind to define levels of conformance and managed to
release the only conformance testing applications available to date. These applications may
play an important role in enabling the increased sharing of conformant VP packages.

The variation between the functionalities of the different eViP VP systems is a strength of the
project but has also created challenges that will need to be addressed by the project or in other
related projects. It is envisaged that further work will be carried out in accordance with work
package 3 of the project.

4.2 Future work
A natural next step is to increase the number of case studies (work in progress) to
systematically test all the possible scenarios between the four VP systems.
Furthermore, we will actively disseminate the results, both in Europe and elsewhere, to ensure
a wider adoption of the eViP profile. The validity and generalisability of our findings will be
challenged as more VP systems get involved in similar work.

5 References

 [1] Balasubramaniam, C. & Poulton, T. (2008), 'eViP: Electronic virtual patients', The Newsletter of the
Higher Education Academy Subject Centre for Medicine, Dentistry and Veterinary Medicine 01.16, 6-
7.

 [2] Ellaway, R. (2004), 'Modeling virtual patients and virtual cases', MedBiquitous E-Learning Discourse.
 [3] Ellaway, R. & McGee, J. (2006), 'Unlocking virtual patients', The Newsletter of the Higher Education

Academy Subject Centre for Medicine, Dentistry and Veterinary Medicine 01.12, 16-17.
 [4] Ellaway, R.; Poulton, T.; Fors, U.; McGee, J. B. & Albright, S. (2008), 'Building a virtual patient

commons.', Med Teach 30(2), 170–174.
 [5] Ellaway, R.; Cameron, H.; Ross, M.; Laurie, G.; Maxwell, M. & Pratt, R. (2006), Clinical Recordings

for Academic Non-clinical Settings, JISC Project.
 [6] Ellaway, R.; Cameron, H.; Ross, M.; Laurie, G.; Maxwell, M. & Pratt, R. (2007), Digital Images in

Education: Realising the Vision, JISC Collections, chapter Towards a Clinical Commons: Using
Clinical Recordings in Academic Non-Clinical Settings, pp. 101-120.

 [7] Fischer, M. R. (2000), Use of Computers in Medical Education (Part II), Zeitschrift fur
Hochschuldidaktik, chapter CASUS – An authoring and learning tool supporting diagnostic reasoning,
pp. 87–98.

 [8] Herry R.;Patel M. (2000), ‘Application profiles: mixing and matching metadata schemas’, Ariadne
Issue 25, http://www.ariadne.ac.uk/issue25/app-profiles/intro.html [accessed 22/12/2008]

 [9] Huang, G.; Reynolds, R. & Candler, C. (2007), 'Virtual patient simulation at US and Canadian medical
schools.', Acad Med 82(5), 446--451.

 [10] Grunwald, T. & Corsbie-Massay, C. (2006), 'Guidelines for cognitively efficient multimedia learning
tools: educational strategies, cognitive load, and interface design.', Acad Med 81(3), 213–223.

 [11] Page, G., Bordage, G., Allen, T. (1995): Developing key-feature problems and examinations to assess
clinical decision-making skills. Academic Medicine, 70; 194-201

 [12] Pfaehler M & Holzer M.(2008) 'Erweiterung des QTI-Standards zur Unterstützung von Long-Menu-
Fragen sowie Abbildung spezifischer Metadaten in QTI 2.1’, Workshop der Arbeitsgruppe
"Computerunterstützte Lehr- und Lernsysteme in der Medizin" der GMDS, Saarbrücken, 34-36

http://www.ariadne.ac.uk/issue25/app-profiles/intro.html
http://www.jisc.ac.uk/media/documents/programmes/digitalrepositories/clinicalrecordingreport.pdf
http://www.jisc.ac.uk/media/documents/programmes/digitalrepositories/clinicalrecordingreport.pdf
http://www.jisc-collections.ac.uk/media/documents/jisc_collections/images_book_ch5.pdf
http://www.jisc-collections.ac.uk/media/documents/jisc_collections/images_book_ch5.pdf

 72

 [13] Rubin, J. & Chisnell, D. (2008), Handbook of Usability Testing, Second Edition: How to Plan, Design,
and Conduct Effective Tests, Wiley Publishing, Inc..

 [14] Ruderich, F.; Bauch, M.; Haag, M.; Heid, J.; Leven, F. J.; Singer, R.; Geiss, H. K.; Jünger, J. &
Tönshoff, B. (2004), 'CAMPUS--a flexible, interactive system for web-based, problem-based learning
in health care.', Stud Health Technol Inform 107(Pt 2), 921--925.

 [15] Sedgewick, R. (2003), Algorithms in Java, Third Edition, Part 5: Graph Algorithms, Addison Wesley.
 [16] Shortliffe EH; & Cimino J. (Eds.) (2006), 'Biomedical Informatics – Computer Applications in Health

Care and Biomedicine', Springer Science
 [17] Smothers, V. & Azan, B. (2008), 'MedBiquitous Virtual Patient Specifications and Description

Document v.0.48', Technical report, MedBiquitous Consortium.
 [18] Smothers, V. & Azan, B. (2008), 'MedBiquitous Virtual Patient Player Specifications and Description

Document v.0.48', Technical report, MedBiquitous Consortium.
 [19] Smothers, V.; Greene, P.; Ellaway, R. & Detmer, D. E. (2008), 'Sharing innovation: the case for

technology standards in health professions education.', Med Teach 30(2), 150--154.
 [20] Zary, N.; Johnson, G.; Boberg, J. & Fors, U. G. H. (2006), 'Development, implementation and pilot

evaluation of a Web-based Virtual Patient Case Simulation environment--Web-SP.', BMC Med Educ
6, 10.

 [21] ADL Sharable Content Object Reference Model http://www.adlnet.gov/scorm
 [22] IMS Application Profile Guidelines Overview

http://www.imsglobal.org/ap/apv1p0/imsap_oviewv1p0.html [accessed 22/12/2008]
 [23] IMS Meta-data Best Practice Guide IEEE 1484.12.1-2002 Standard for Learning Object Metadata

http://www.imsglobal.org/metadata/mdv1p3pd/imsmd_bestv1p3pd.html [accessed 22/12/2008]
 [24] IMS QTI Homepage http://www.imsglobal.org/question [accessed 22/12/2008]
 [25] IMS Question and Test Interoperability Overview Version 2.1 Public Draft (revision 2) Specification

http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_oviewv2p1pd2.html [accessed 22/12/2008]
 [26] IMS Question and Test Interoperability Implementation Guide Version 2.1 Public Draft (revision 2)

Specification http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_implv2p1pd2.html [accessed
22/12/2008]

 [27] IMS Question and Test Interoperability Assessment Test, Section, and Item Information Model
Version 2.1 Public Draft (revision 2) Specification
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_infov2p1pd2.html [accessed 22/12/2008]

 [28] OpenLabyrinth http://sourceforge.net/projects/openlabyrinth/ [accessed 22/12/2008]
 [29] OpenLabyrinth User Guide http://labyrinth.mvm.ed.ac.uk/documents/labyrinth_userguide.pdf

[accessed 22/12/2008]
 [30] W3C XML Schema Tools http://www.w3.org/XML/Schema#Tools [accessed 22/12/2008]
 [31] W3C Timed Text (TT) Authoring Format 1.0 – Distribution Format Exchange Profile (DFXP)

http://www.w3.org/TR/2006/CR-ttaf1-dfxp-20061116 [accessed 22/12/2008]

6 Annex 1 Statistics of MVP usage in eViP application profile

6.1 Frequency of occurrence of MVP elements in all 6 test packages

Description in 3.6 (Statistics of MVP usage in eViP application profile)

virtualpatientsdata.xml

MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

Used
in eViP?

Action 0 0 0 0 12 756 +
Age 1 0 0 0 1 1 +
Appropriateness 0 0 0 0 0 0 not used
BodyPart 31 0 0 0 1 756 +
Breed 0 0 0 0 0 0 not u ed s
CoreDemographics 1 0 0 0 1 1 +
DemographicCharacteristic 0 0 0 0 1 0 +
Description 59 0 0 0 13 756 +
Diagnosis 14 0 0 0 0 1 +
DiagnosisName 14 0 0 0 0 1 +
DiagnosticTest 56 0 0 0 24 333 +
Dose 0 0 0 0 6 0 +

http://www.adlnet.gov/scorm
http://www.imsglobal.org/ap/apv1p0/imsap_oviewv1p0.html
http://www.imsglobal.org/metadata/mdv1p3pd/imsmd_bestv1p3pd.html
http://www.imsglobal.org/question
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_oviewv2p1pd2.html
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_implv2p1pd2.html
http://www.imsglobal.org/question/qtiv2p1pd2/imsqti_infov2p1pd2.html
http://sourceforge.net/projects/openlabyrinth/
http://labyrinth.mvm.ed.ac.uk/documents/labyrinth_userguide.pdf
http://www.w3.org/XML/Schema#Tools
http://www.w3.org/TR/2006/CR-ttaf1-dfxp-20061116

 73

ExamName 59 0 0 0 12 756 +
Finding 59 0 0 0 12 756 +
Frequency 0 0 0 0 6 0 +
FrontOrBack 0 0 0 0 0 734 +
InferiorOrSuperior 0 0 0 0 0 0 not used
Intervention 10 0 0 0 0 0 +
InterventionName 10 0 0 0 0 0 +
InterviewItem 48 0 0 0 35 190 +
Item 0 0 0 0 0 0 not used
Likelihood 14 0 0 0 0 0 +
Location 0 0 0 0 1 832 +
LocationOnBody 31 0 0 0 1 756 +
Media 0 0 0 0 1 832 +
MediaPath 0 0 0 0 1 832 +
Medication 0 0 0 0 6 0 +
MedicationName 0 0 0 0 6 0 +
Name 1 0 0 0 1 1 +
Normal 56 0 0 0 24 333 +
Organization 0 0 0 0 0 0 not u ed s
PatientDemographics 1 0 0 0 1 1 +
PatientID 1 0 0 0 1 1 +
PhysicalExam 59 0 0 0 12 756 +
ProximalOrDistal 0 0 0 0 0 0 not u ed s
Question 48 0 0 0 35 190 +
Race 0 0 0 0 1 0 +
Response 48 0 0 0 35 190 +
Result 56 0 0 0 24 333 +
Results 0 0 0 0 0 0 not used
RightOrLeft 0 0 0 0 0 646 +
Route 0 0 0 0 6 0 +
Section 0 0 0 0 0 0 not used
Sex 1 0 0 0 1 1 +
Species 0 0 0 0 0 0 not used
TestName 56 0 0 0 24 333 +
Title 0 0 0 0 1 0 +
Unit 56 0 0 0 24 333 +
VPDText 49 28 22 25 23 1 +
VirtualPatientData 1 1 1 1 1 1 +
XtensibleInfo 1 0 1 0 0 1 +

dataavailabilitymodel.xml

MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

Used
in eViP?

DAMNode 54 28 10 10 38 100 +
DAMNodeItem 246 38 29 29 202 1376 +
DAMNodeLabel 28 28 10 10 0 100 +
DAMNodePath 0 0 0 0 0 97 +
DataAvailabilityModel 1 1 1 1 1 1 +
ItemComment 18 0 3 3 0 0 +
ItemOrder 0 0 29 29 202 26 +
ItemPath 246 38 29 29 202 1376 +
XtensibleInfo 1 0 0 0 0 0 +

activitymodel.xml

MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

Used
in eViP?

ActivityModel 1 1 1 1 1 1 +
ActivityNode 28 28 7 7 37 3 +
ActivityNodeA 27 0 6 6 77 6 +
ActivityNodeB 27 0 6 6 77 6 +

 74

ActivityNodes 1 1 1 1 1 1 +
And 0 0 0 0 0 0 not used
ConditionalRule 0 0 0 0 0 0 not used
Content 28 28 7 7 37 3 +
Counter 0 0 0 0 0 0 not used
CounterActionRule 0 0 0 0 0 0 not used
CounterInitValue 0 0 0 0 0 0 not used
CounterLabel 0 0 0 0 0 0 not used
CounterOperator 0 0 0 0 0 0 not used
CounterPath 0 0 0 0 0 0 not used
CounterRuleValue 0 0 0 0 0 0 not used
CounterRules 0 0 0 0 0 0 not used
CounterUnitsPrefix 0 0 0 0 0 0 not used
CounterUnitsSuffix 0 0 0 0 0 0 not used
Counters 0 0 0 0 0 0 not us d e
Link 27 0 6 6 77 6 +
Links 1 0 1 1 1 1 +
Nand 0 0 0 0 0 0 not used
NavigateGlobal 0 0 0 0 37 0 +
NodeSection 1 1 3 3 1 3 +
Nor 0 0 0 0 0 0 not used
Operand 0 0 0 0 0 0 not used
Operator 0 0 0 0 0 0 not used
Or 0 0 0 0 0 0 not used
Probability 0 0 0 0 37 0 +
Properties 1 0 0 0 1 0 +
Relation 0 0 0 0 0 0 not used
Rule 0 0 0 0 0 0 not used
RuleMessage 0 0 0 0 0 0 not used
RuleRedirect 0 0 0 0 0 0 not used
Rules 0 0 0 0 37 0 +
Services 0 0 0 0 0 0 not used
Timer 0 0 0 0 0 0 not used
TimerDeltaSeconds 0 0 0 0 0 0 not used
TimerDirection 0 0 0 0 0 0 not used
TimerRules 0 0 0 0 0 0 not used
Value 0 0 0 0 0 0 not used
Weighting 0 0 0 0 0 0 not used
XtensibleInfo 0 0 0 0 0 0 not used

6.2 Relative text weight of MVP elements in all 6 test packages

Description in 3.6 (Statistics of MVP usage in eViP application profile)

virtualpatientsdata.xml

 MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

Action 0 0 0 0 17,2 7,9
Age 5 0 0 0 4 4
Appropriateness 0 0 0 0 0 0
BodyPart 10,2 0 0 0 3 5,1
Breed 0 0 0 0 0 0
CoreDemographics 25 0 0 0 35 39
DemographicCharacteristic 0 0 0 0 20 0
Description 18,8 0 0 0 28 3
Diagnosis 21,7 0 0 0 0 462
DiagnosisName 17,7 0 0 0 0 462

 75

DiagnosticTest 116,9 0 0 0 42,1 74
Dose 0 0 0 0 22,2 0
ExamName 18,8 0 0 0 16,7 31,6
Finding 37,4 0 0 0 26,3 13,4
Frequency 0 0 0 0 30,8 0
FrontOrBack 0 0 0 0 0 4,6
InferiorOrSuperior 0 0 0 0 0 0
Intervention 26,4 0 0 0 0 0
InterventionName 26,4 0 0 0 0 0
InterviewItem 127,4 0 0 0 87,4 84,8
Item 0 0 0 0 0 0
Likelihood 4 0 0 0 0 0
Location 0 0 0 0 29 85
LocationOnBody 10,2 0 0 0 3 13,5
Media 0 0 0 0 78 140
MediaPath 0 0 0 0 49 55
Medication 0 0 0 0 70,3 0
MedicationName 0 0 0 0 9,7 0
Name 8 0 0 0 11 18
Normal 5,4 0 0 0 5,5 7,1
Organization 0 0 0 0 0 0
PatientDemographics 25 0 0 0 55 39
PatientID 6 0 0 0 9 13
PhysicalExam 80,4 0 0 0 90,2 210,7
ProximalOrDistal 0 0 0 0 0 0
Question 84 0 0 0 44,7 32,5
Race 0 0 0 0 7 0
Response 43,4 0 0 0 42,7 52,3
Result 10 0 0 0 15,5 17,4
Results 0 0 0 0 0 0
RightOrLeft 0 0 0 0 0 4,5
Route 0 0 0 0 7,7 0
Section 0 0 0 0 0 0
Sex 6 0 0 0 4 4
Species 0 0 0 0 0 0
TestName 96,4 0 0 0 13,3 16,5
Title 0 0 0 0 13 0
Unit 5 0 0 0 4,7 4,4
VPDText 338 977,9 347 315,9 188,7 70
VirtualPatientData 91479 27380 8108 7897 9967 220656
XtensibleInfo 56918 0 474 0 0 19996

dataavailabilitymodel.xml

 MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

DAMNode 305,6 126,4 188,8 178,9 253,6 756,1
DAMNodeItem 64,6 70,6 57,7 54,3 47,7 54,1
DAMNodeLabel 21,5 30,6 21,4 21,4 0 11,2
DAMNodePath 0 0 0 0 0 51
DataAvailabilityModel 16502 3540 1888 1789 9636 75612
ItemComment 52 0 57 57 0 0
ItemOrder 0 0 1 1 1,7 1,1
ItemPath 60,8 70,6 50,8 47,4 46 50,5
XtensibleInfo 0 0 0 0 0 0

 76

activitymodel.xml

 MVP Element

CAMPUS VP
Test Case 1

CAMPUS KF
Test Case 2

CASUS
Test Case 3a

CASUS
Test Case 3b

OpenLabyrinth
Test Case 4

Web-SP
Test Case 5

ActivityModel 6916 1983 1188 1188 12273 958
ActivityNode 68,9 70,8 48 48 57 71,3
ActivityNodeA 92,4 0 71 71 66 62
ActivityNodeB 92,3 0 71 71 66 62
ActivityNodes 1929 1983 336 336 2109 214
And 0 0 0 0 0 0
ConditionalRule 0 0 0 0 0 0
Content 68,9 70,8 48 48 52 71,3
Counter 0 0 0 0 0 0
CounterActionRule 0 0 0 0 0 0
CounterInitValue 0 0 0 0 0 0
CounterLabel 0 0 0 0 0 0
CounterOperator 0 0 0 0 0 0
CounterPath 0 0 0 0 0 0
CounterRuleValue 0 0 0 0 0 0
CounterRules 0 0 0 0 0 0
CounterUnitsPrefix 0 0 0 0 0 0
CounterUnitsSuffix 0 0 0 0 0 0
Counters 0 0 0 0 0 0
Link 184,7 0 142 142 132 124
Links 4987 0 852 852 10164 744
Nand 0 0 0 0 0 0
NavigateGlobal 0 0 0 0 2 0
NodeSection 1929 1983 112 112 2109 71,3
Nor 0 0 0 0 0 0
Operand 0 0 0 0 0 0
Operator 0 0 0 0 0 0
Or 0 0 0 0 0 0
Probability 0 0 0 0 3 0
Properties 0 0 0 0 0 0
Relation 0 0 0 0 0 0
Rule 0 0 0 0 0 0
RuleMessage 0 0 0 0 0 0
RuleRedirect 0 0 0 0 0 0
Rules 0 0 0 0 5 0
Services 0 0 0 0 0 0
Timer 0 0 0 0 0 0
TimerDeltaSeconds 0 0 0 0 0 0
TimerDirection 0 0 0 0 0 0
TimerRules 0 0 0 0 0 0
Value 0 0 0 0 0 0
Weighting 0 0 0 0 0 0
XtensibleInfo 0 0 0 0 0 0

 77

7 Annex 2 MVP XML and eViP LOM Specifications

7.1 The MVP specification
The data specification for the exchange and reuse of virtual patients used by the eViP profile
originated from the ‘MedBiquitous Virtual Patient’ (or MVP) specification.
A document describing the structure of the XML schemas (version 0.48) within the MVP
specification in detail is available here:
http://mvptools.googlecode.com/files/VirtualPatientSpecification_0.48_08May2008.pdf

7.2 eViP LOM
The eViP profile uses the Healthcare LOM (version 1.0) to describe the VP package.
LOM is one of the standards used by the SCORM reference model for interoperability of
online learning content. LOM provides descriptive information about a learning object. Just as
a label on a container provides information on what’s inside, learning object metadata
provides information on a learning module, including the title, author, description, keywords,
educational objective, and other relevant information.
Healthcare LOM is based on and is a profile of the Institute of Electrical and Electronics
Engineers (IEEE) 1484.12.1–2002 Standard for Learning Object Metadata (LOM) and the
Extensible Markup Language (XML) Schema Definition Language Binding for Learning
Object Metadata (IEEE 1484.12.3-2005) developed by the IEEE Learning Technology
Standards Committee.

A document describing the Healthcare Learning Object Metadata (Healthcare LOM) in detail
is available here:
http://mvptools.googlecode.com/files/HealthcareLOMSpecification1.0.pdf

http://mvptools.googlecode.com/files/HealthcareLOMSpecification1.0.pdf
http://mvptools.googlecode.com/files/VirtualPatientSpecification_0.48_08May2008.pdf

	1 Overall description
	1.1 Structure of the document
	1.2 Introduction
	1.3 Background
	1.4 The eViP application profile
	1.5 Virtual patient systems
	1.5.1.1 Virtual patient models

	1.6 Components of the eViP Application Profile
	1.6.1 The MedBiquitous Virtual Patient Specification
	1.6.1.1 Virtual Patient Data (VPD)
	1.6.1.2 Media Resources (MR)
	1.6.1.3 Data Availability Model (DAM)
	1.6.1.4 Activity Model (AM)
	1.6.1.5 Virtual Patient Player (VPP)
	1.6.1.6 Structure of the MVP package

	1.6.2 The eViP Metadata
	1.6.2.1 Classifications in the eViP Metadata

	1.6.3 The SCORM package
	1.6.4 Conformance metrics

	2 Description of the profile implementation in each VP System
	2.1 CAMPUS
	2.1.1 Description of the system and the VP model used by the system
	2.1.2 Mapping of the VP XML MedBiquitous Standard to the Different Elements/Modules of the Player
	2.1.2.1 CAMPUS VP
	2.1.2.1.1 Export
	2.1.2.1.1.1 CAMPUS XtensibleInfo
	2.1.2.1.1.2 QTI

	2.1.2.1.2 Import

	2.1.2.2 Key Feature Sections
	2.1.2.2.1 Export
	2.1.2.2.2 Import
	2.1.2.2.2.1 Media Captions using W3C's Timed Text
	2.1.2.2.2.2 CASUS QTI Export

	2.1.3 Export module
	2.1.3.1 Functions Related to Export of VPs
	2.1.3.1.1 CAMPUS VP
	2.1.3.1.2 CAMPUS Key Feature

	2.1.3.2 Development of the Export Module
	2.1.3.2.1 CAMPUS VP
	2.1.3.2.2 CAMPUS Key Feature

	2.1.3.3 Static Aspects
	2.1.3.3.1 CAMPUS VP
	2.1.3.3.2 CAMPUS Key Feature

	2.1.3.4 Dynamic Aspects
	2.1.3.4.1 CAMPUS VP
	2.1.3.4.2 CAMPUS Key Feature

	2.1.4 Import Module
	2.1.4.1 Functions Related to Import of VPs
	2.1.4.1.1 CAMPUS VP
	2.1.4.1.2 CAMPUS Key Feature

	2.1.4.2 Development of the Import Module
	2.1.4.2.1 CAMPUS VP
	2.1.4.2.2 CAMPUS Key Feature

	2.1.4.3 Static Aspects
	2.1.4.3.1 CAMPUS VP
	2.1.4.3.2 CAMPUS Key Feature

	2.1.4.4 Dynamic aspects
	2.1.4.4.1 CAMPUS VP
	2.1.4.4.2 CAMPUS Key Feature

	2.2 CASUS
	2.2.1 Description of the system and the VP model used by the system
	2.2.2 Mapping of the VP xml MedBiquitous standard to the different elements/modules of the player
	2.2.3 Export module
	2.2.3.1.1 Functions related to export of VPs
	2.2.3.1.2 Development of the export module
	2.2.3.1.3 Static aspects (e.g. class diagrams)
	2.2.3.1.4 Dynamic aspects (e.g. activity/state diagrams)

	2.2.4 Import module
	2.2.4.1.1 Functions related to import of VPs
	2.2.4.1.2 Development of the import module
	2.2.4.1.3 Static aspects (e.g. class diagrams)
	2.2.4.1.4 Dynamic aspects (e.g. activity/state diagrams)

	2.3 OpenLabyrinth
	2.3.1 Description of the system and the VP model used by the system
	2.3.2 Mapping of the VP xml MedBiquitous standard to the different elements/modules of the system
	2.3.3 OpenLabyrinth and VUE
	2.3.4 OpenLabyrinth and QTI
	2.3.5 Export module
	2.3.5.1 Methods/Functions related to export of VPs
	2.3.5.2 Development of the export module

	2.3.6 Import module
	2.3.6.1 Methods/Functions related to import of VPs

	2.3.7 Static aspects (e.g. class diagrams)
	2.3.8 Dynamic aspects (e.g. activity/state diagrams)

	2.4 Web-SP
	2.4.1 Description of the system and the VP model used by the system
	2.4.2 Export module
	2.4.2.1.1 Functions related to export of VPs
	2.4.2.1.2 Development of the export module

	2.4.3 Import module
	2.4.3.1 Functions related to import of VPs

	3 Testing for conformance
	3.1.1 Levels of conformance
	3.1.2 eViP compliancy of a VP system
	3.1.3 Conformance application
	3.2 eViP Conformance Testing Suites
	3.2.1 Introduction
	3.2.2 Description of eViP conformance testing application developed by KI
	3.2.3 Description of XSLT-based eViP conformance testing application developed by HD

	3.3 Other Tools and Resources useful in eViP profile conformance testing
	3.3.1 Description of conformance tests in Altova XML Spy

	3.4 Test cases
	3.5 Validation of imported cases in target systems - pilot study
	3.6 Statistics of MVP usage in eViP application profile
	3.6.1 Introduction
	3.6.2 Results
	3.6.3 Conclusions

	4 Summary
	4.1 Successes & challenges
	4.2 Future work

	5 References
	6 Annex 1 Statistics of MVP usage in eViP application profile
	6.1 Frequency of occurrence of MVP elements in all 6 test packages
	6.2 Relative text weight of MVP elements in all 6 test packages

	7 Annex 2 MVP XML and eViP LOM Specifications
	7.1 The MVP specification
	7.2 eViP LOM

